Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Quantum Dot LEDs Incorporate Thermally Polymerized Hole Transport Layer

Photonics Spectra
Apr 2006
Anne L. Fischer

Colloidal semiconductor quantum dots show promise for use in optoelectronic devices such as LEDs and solar cells. Now a group led by David S. Ginger and Alex K.-Y. Jen at the University of Washington in Seattle has fabricated multilayer nanocrystal LEDs by spincoating a monolayer of colloidal CdSe/CdS nanocrystals atop polymerized hole transport layers.


The hybrid quantum dot LED was made with a thermally polymerized hole transport layer and a spin-coated monolayer of orange-emitting CdSe/CdS quantum dots.

Ginger, an assistant professor of chemistry, said that the best devices use a single monolayer of quantum dots. The challenge was controlling the thickness of the quantum dot layer independent of the organic one.

The investigators found that spincoating the quantum dots from a chloroform solution onto the solventresistant, thermally cross-linked layer yields nearly pure electroluminescence from the quantum dots. By using a second solution-processible hole transport layer, they improved the efficiency to approximately 0.8 percent at a brightness of 100 cd/m2.

Ginger believes that the LEDs show such pure electroluminescence even with imperfect quantum dot layers because the carriers are confined to recombine very near the quantum dot layer. Alternatively, it is possible that the cross-linked hole transport polymer is less intrinsically electroluminescent than its more common molecular analogue.

The researchers believe that the performance can be further improved. They will work to optimize the energy levels and will create devices with multiple hole transport layers. They also expect to improve the photonic structure of the LED.

Nano Letters, online Feb. 1, 2006, doi: 10.1021/nl052417e.

Basic ScienceenergyFeature ArticlesFeatureslight sourcesnanonanocrystal LEDsoptoelectronic devicessemiconductor quantum dotsLEDs

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.