Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Quantum Dot Single-Photon Detector Is Studied

Facebook Twitter LinkedIn Email Comments
Scientists at Toshiba Research Europe Ltd. and at Cambridge University, both in Cambridge, UK, have demonstrated that single photons may be detected in a quantum dot device by monitoring changes in the resonant tunneling current through a double-barrier structure. Describing the work in the Feb. 18 issue of Physical Review Letters, they report detection efficiencies of 12.5 percent, which they estimate may be improved to approximately 65 percent with optimization of the device structure.

The detector is a GaAs NIN diode, with the intrinsic region featuring a double-barrier tunnel structure of AlGaAs and a layer of InAs quantum dots. The researchers selected the growth conditions for the fabrication of the dots to yield an areal density of approximately 1010/cm2. Under a forward bias close to resonance, the detector displays a discrete, upward step in its tunnel current each time that a quantum dot captures a photon, an effect that the investigators observed at operating temperatures of up to 77 K. Tests under 550-nm illumination indicate that the device has a quantum efficiency of approximately 11 percent.

Such a single-photon detector may find application in quantum key distribution systems. The effect also may be exploited to produce single-electron detectors for quantum computing, the scientists suggest.

Photonics Spectra
Mar 2005
As We Go To PressBreaking NewsCambridge UniversityCommunicationsConsumerindustrialPresstime Bulletinquantum dotSensors & Detectorssingle photonsToshiba Research Europe Ltd.

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.