Search
Menu
Deposition Sciences Inc. - Difficult Coatings - LB - 8/23

Quantum Dot Spectrometer in Development for Use in Space

Facebook X LinkedIn Email
A prototype of an imaging spectrometer based on quantum-dot technology could miniaturize and potentially revolutionize space-based spectrometers, particularly those used on uninhabited aerial vehicles and small satellites.

The research is a collaborative effort between NASA’s Goddard Space Flight Center and the Massachusetts Institute of Technology (MIT). NASA researchers are currently working to develop, qualify through thermal vacuum and vibration tests, and demonstrate a 20 × 20 quantum-dot array that is sensitive to visible wavelengths needed to image the sun and the aurora.

A device prints the quantum dot filters that absorb different wavelengths of light depending on their size and composition. NASA Goddard and MIT.
This illustration shows how a device prints the quantum dot filters that absorb different wavelengths of light depending on their size and composition. The emerging technology could give scientists a more flexible, cost-effective approach for developing spectrometers. Courtesy of O'Reilly Science Art.

Under the collaboration, researchers at NASA are developing an instrument concept specifically for a CubeSat application. Researchers at MIT are investigating techniques for synthesizing different precursor chemicals to create the dots, and then printing them onto a suitable substrate.

“Ultimately, we would want to print the dots directly onto the detector pixels,” said NASA research engineer and principal investigator Mahmooda Sultana.

The researchers believe that the technology could easily be expanded to cover a broader range of wavelengths, from UV to mid-IR. These wavelengths could be used for potential space applications in Earth science, heliophysics and planetary science.

“Higher-spectral resolution requires long optical paths for instruments that use gratings and prisms. This often results in large instruments,” said Sultana. “Whereas here, with quantum dots that act like filters that absorb different wavelengths depending on their size and shape, we can make an ultracompact instrument. In other words, you could eliminate optical parts, like gratings, prisms and interference filters.”

PI Physik Instrumente - Revolution In Photonics Align LW MR3/24

Just as important, the technology allows the instrument developer to generate nearly an unlimited number of different dots. As their size decreases, the wavelength of the light that the quantum dots will absorb decreases.

NASA Principal Investigator Mahmooda Sultana
Principal Investigator Mahmooda Sultana has teamed with the Massachusetts Institute of Technology to develop a quantum dot spectrometer for use in space. In this photo, she is characterizing the optical properties of the quantum dot pixels. Courtesy of NASA/W. Hrybyk.

“This makes it possible to produce a continuously tunable, yet distinct, set of absorptive filters where each pixel is made of a quantum dot of a specific size, shape or composition,” Sultana said. “We would have precise control over what each dot absorbs. We could literally customize the instrument to observe many different bands with high-spectral resolution.”

“This is a very innovative technology,” she added, conceding that it is very early in its development. “But we're trying to raise its technology-readiness level very quickly. Several space-science opportunities that could benefit are in the pipeline.

“This is as novel as it gets,” said Sultana. “It really could simplify instrument integration.”

The original article about this technology appeared on the NASA web site.


Published: February 2017
Glossary
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
Research & TechnologyAmericasNASAeducationImagingspectroscopyaerospacequantum dotsnanoTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.