Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

A New Alexandrite Laser Drives More Sustainable Atmospheric Science

Facebook X LinkedIn Email
A new generation of lidar systems based on diode-pumped alexandrite lasers is advancing atmospheric science by providing wind and temperature data on a 24/7 basis for altitudes reaching up to 100 km.

ANDREAS THOSS, CONTRIBUTING EDITOR

As anyone who has ever worked with an alexandrite laser can attest, its lasing medium demands respect. “It has about every problem a laser engineer can imagine,” said Josef Höffner, a scientist at the Leibniz Institute of Atmospheric Physics (IAP) in Kühlungsborn, a small town on the shores of the Baltic Sea in northern Germany. Although the use of alexandrite as a laser crystal has inherent challenges, alexandrite lasers are a promising tool for the lidar systems used in breakthrough atmospheric research. Alexandrite offers a broad emission band in the red...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: February 2023
    Glossary
    alexandrite lasers
    An alexandrite laser is a solid-state laser that utilizes a synthetic crystal made from the rare earth element alexandrite (BeAl2O4:Cr3+). This crystal is capable of emitting laser light in the near-infrared spectrum, typically around 755 nanometers. Alexandrite lasers are known for their versatility and are widely used in various medical, cosmetic, and scientific applications. alexandrite laser suppliers → One of the primary advantages of alexandrite lasers is their ability to...
    lidar
    Lidar, short for light detection and ranging, is a remote sensing technology that uses laser light to measure distances and generate precise, three-dimensional information about the shape and characteristics of objects and surfaces. Lidar systems typically consist of a laser scanner, a GPS receiver, and an inertial measurement unit (IMU), all integrated into a single system. Here is how lidar works: Laser emission: A laser emits laser pulses, often in the form of rapid and repetitive laser...
    remote sensing
    Remote sensing is a method of data collection and observation where information about objects, areas, or phenomena on Earth's surface is gathered from a distance, typically using sensors onboard satellites, aircraft, drones, or other platforms. This technique enables the monitoring and analysis of Earth's surface and atmosphere without direct physical contact. Remote sensing systems capture electromagnetic radiation (such as visible light, infrared, microwave, or radio waves) reflected or...
    FeaturesLasersalexandrite laserslidarremote sensingatmospheric scienceenvironment

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.