Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Alfano-Led Team Introduces Alternative Route to Odd Higher Harmonic Generation

Facebook Twitter LinkedIn Email
NEW YORK, Feb. 7, 2022 — Researchers in the group of Robert Alfano at the Institute of Ultrafast Spectroscopy and Lasers at the City College of New York, with collaborators from the University of California, San Diego, have introduced an approach to explain higher harmonic generation (HHG). The method is an alternative to the electronic cloud distortion model proposed in 1970. The Alfano-led team modulated the phase by nonlinear Kerr effect at optical cycles by the electronic self-phase modulation (ESPM) for gases and condensed matter for compact tabletop UUV and x-ray microscopes. The 1970 model is based on...Read full article

Related content from Photonics Media



    ARTICLES


    PRODUCTS


    PHOTONICS HANDBOOK ARTICLES


    WHITEPAPERS


    WEBINARS


    PHOTONICS DICTIONARY TERMS


    MEDIA


    PHOTONICS BUYERS' GUIDE CATEGORIES


    COMPANIES
    Photonics.com
    Feb 2022
    GLOSSARY
    kerr effect
    A quadratic nonlinear electro-optic effect found in particular liquids and crystals that are capable of advancing or retarding the phase of the induced ordinary ray relative to the extraordinary ray when an electric current is applied. It varies as the square of the voltage.
    Research & TechnologyeducationKerrKerr effectMicroscopyultrashort pulse lasersfemtosecond lasersrobert alfanoDr. Robert Alfanobob alfanoCUNYAmericasx-ray microscopyHHGhigher harmonic generationphase modulationmatterlight-matter interactionKerr index

    back to top
    Facebook Twitter Instagram LinkedIn YouTube RSS
    ©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

    Photonics Media, Laurin Publishing
    x We deliver – right to your inbox. Subscribe FREE to our newsletters.
    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.