Search
Menu
Trioptics GmbH - Worldwide Benchmark 4-24 LB

Challenges and Opportunities in Superresolution

Facebook X LinkedIn Email
This increasingly popular research tool is opening the way to structures beyond the reach of traditional optical microscopes.

RUSSELL ULBRICH, OLYMPUS AMERICA INC., SCIENTIFIC SOLUTIONS GROUP

Much of our understanding of biology has come from our ability to image biological processes and structures through microscopes. But until recently, the imaging of intracellular structures and activities has been constrained by the optical resolution limit of the imaging systems themselves. This diffraction limit, first stipulated by Ernst Abbe in 1873, established the maximum resolution of an optical system to be about 200 nm in the X-Y (lateral) direction. (In addition, a theoretical limit of about 500 to 700 nm exists in Z [depth].) This means that many subcellular structures and dynamics...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: March 2017
    Glossary
    superresolution
    Superresolution refers to the enhancement or improvement of the spatial resolution beyond the conventional limits imposed by the diffraction of light. In the context of imaging, it is a set of techniques and algorithms that aim to achieve higher resolution images than what is traditionally possible using standard imaging systems. In conventional optical microscopy, the resolution is limited by the diffraction of light, a phenomenon described by Ernst Abbe's diffraction limit. This limit sets a...
    FeaturessuperresolutionMicroscopyBiophotonicsOlympusRussell Ulbrich

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.