Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

Diffractive Optical Network Supports Quantitative Phase Imaging

Facebook X LinkedIn Email
A team of researchers led by Aydogan Ozcan from the Electrical and Computer Engineering Department and California Nanosystems Institute at UCLA has developed a diffractive optical network to replace digital image reconstruction algorithms used in quantitative phase imaging (QPI) systems. The technology uses a series of passive optical surfaces that were spatially engineered with deep learning. Unlike conventional QPI systems, where phase recovery is performed on a computer using an intensity measurement or a hologram, a diffractive QPI network directly processes the optical waves...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: May 2022
    Glossary
    phase
    In optics and photonics, "phase" refers to a property of electromagnetic waves, such as light, that describes the position of a wave at a given point in time within its oscillation cycle. More specifically, it indicates the position of a wave relative to a reference point, typically the starting point of a cycle. When discussing phase in optics, it's often described in terms of the phase difference between two waves or the phase of a single wave. The phase difference between two waves is the...
    intensity
    Flux per unit solid angle.
    quantitative phase imaging
    Quantitative phase imaging (QPI) is an advanced imaging technique used in microscopy to measure and analyze the optical phase information of transparent specimens. Unlike traditional brightfield microscopy, which relies on the absorption of light, QPI directly captures and quantifies the phase changes induced by a specimen as light passes through it. This enables the visualization of transparent structures and provides valuable quantitative information about biological and non-biological...
    Research & TechnologyOpticsImagingdiffractivephasephase imagingintensityquantitative phase imagingBiophotonicsQPIAdvanced Optical materialsAydogan OzcanAmericasUCLAUniversity of CaliforniaLos AngelesMaterialscomputeoptical networkscommunicationTechnology News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.