Search
Menu
Lumencor Inc. - Power of Light 4-24 LB

Directed Currents Generated at THz Frequencies Are Higher Than Current Clock Rates

Facebook X LinkedIn Email
BERLIN, Jan. 16, 2019 — Researchers at the Max Born Institute (MBI) generated directed electric currents at terahertz (THz) frequencies from light absorbed in semiconductor crystals. According to the researchers, this is a much higher frequency than the clock rates of current electronics. They showed that the underlying mechanism for this phenomenon is the electronic charge transfer between neighboring atoms in the crystal lattice. (a) Unit cell of the semiconductor gallium arsenide (GaAs). Chemical bonds (blue) connect every Ga atom to four neighboring As atoms and vice versa. Valence electron density in the...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2019
    Glossary
    optoelectronics
    Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
    terahertz
    Terahertz (THz) refers to a unit of frequency in the electromagnetic spectrum, denoting waves with frequencies between 0.1 and 10 terahertz. One terahertz is equivalent to one trillion hertz, or cycles per second. The terahertz frequency range falls between the microwave and infrared regions of the electromagnetic spectrum. Key points about terahertz include: Frequency range: The terahertz range spans from approximately 0.1 terahertz (100 gigahertz) to 10 terahertz. This corresponds to...
    Research & TechnologyeducationEuropeMax Born InstituteLight SourcesenergyoptoelectronicsTHzterahertzsemiconductorsMaterialsOpticsphysicshigh-frequency electronics

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.