Search
Menu
CASTECH INC - New Building the Bridge of Light

Microrotors Trap Tiny Objects Without Exposing Them to Light

Facebook X LinkedIn Email
EXETER, England, March 18, 2019 — A team of researchers from the Universities of Glasgow, Bristol, and Exeter have developed a technique that optically traps microscopic objects by using hydrodynamics to exert nanoscale-precision control over aqueous particles, without directly illuminating them. This novel approach could lead to optical tweezers that will be able to trap and manipulate complex objects without exposing them to the risks of high-intensity light. Researchers from the Universities of Glasgow, Bristol, and Exeter have developed a new technique that enables optical trapping without focusing any laser light...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: March 2019
    Glossary
    optical tweezers
    Optical tweezers refer to a scientific instrument that uses the pressure of laser light to trap and manipulate microscopic objects, such as particles or biological cells, in three dimensions. This technique relies on the momentum transfer of photons from the laser beam to the trapped objects, creating a stable trapping potential. Optical tweezers are widely used in physics, biology, and nanotechnology for studying and manipulating tiny structures at the microscale and nanoscale levels. Key...
    optofluidics
    Optofluidics is an interdisciplinary field that combines principles from optics and fluidics to create devices and systems that integrate the manipulation of light and fluids. This field focuses on the interaction between light and fluidic materials, allowing for the development of innovative technologies with applications in areas such as sensing, imaging, and biotechnology. Key aspects of optofluidics include: Integration of optics and fluidics: Optofluidic devices are designed to...
    positioning
    Positioning generally refers to the determination or identification of the location or placement of an object, person, or entity in a specific space or relative to a reference point. The term is used in various contexts, and the methods for positioning can vary depending on the application. Key aspects of positioning include: Spatial coordinates: Positioning often involves expressing the location of an object in terms of spatial coordinates. These coordinates may include dimensions such as...
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    nanopositioning
    Nanopositioning refers to the precise and controlled movement or manipulation of objects or components at the nanometer scale. This technology enables the positioning of objects with extremely high accuracy and resolution, typically in the range of nanometers or even sub-nanometer levels. Nanopositioning systems are employed in various scientific, industrial, and research applications where ultra-precise positioning is required. Key features and aspects of nanopositioning include: Small...
    Research & TechnologyeducationLight SourcesEuropeUniversity of ExeterOpticsMicroscopyoptical tweezersOptofluidicspositioningnanoNanopositioningBiophotonicsmedicalOptical trappingroboticsmicroroboticsEuro News

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.