Search
Menu
Vescent Photonics LLC - Lasers, Combs, Controls 4/15-5/15 LB

Nanostructures Allow High Harmonic Generation with Pulsed Lasers

Facebook X LinkedIn Email
ITHACA, N.Y., July 27, 2021 — Cornell University researchers have developed nanostructures that enable record-breaking conversion of laser pulses into high-harmonic generation. The work paves the way for new scientific tools for high-resolution imaging as well as the study of physical processes that occur at the scale of an attosecond. High harmonic generation is used to merge photons from a pulsed laser into one ultrashort photon with higher energy, producing extreme ultraviolet (EUV) light and x-rays used for a variety of scientific purposes. Gases have traditionally been used as sources of harmonics, but a...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2021
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    frequency comb
    A frequency comb is a precise and regular series of equally spaced spectral lines, or frequencies, that are generated with great accuracy. The term "frequency comb" is often associated with the Nobel Prize-winning technique known as frequency comb spectroscopy, developed by John L. Hall and Theodor W. Hänsch in the 1990s. The technology has since become a powerful tool in various scientific and technological applications. Key points about frequency combs: Origin and development: The...
    Research & TechnologyLaserspulsed lasersMaterialsnanostructurenanostructuresharmonicsnanofrequency combsurfacesCornellCornell UniversityAmericasmetasurfacegallium phosphide

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.