Search
Menu
LPC/Photonics.com - Stay-Up-To-Date

Quantum Dots Demonstrate High Luminescence Efficiency

Facebook X LinkedIn Email
STANFORD, Calif., March 22, 2019 — A new technique for precisely measuring quantum dot (QD) performance, developed by researchers at Stanford University, showed that groups of QDs reliably emit about 99.6 percent of the light they absorb, with a potential error of 0.2 percent in either direction. The measurement technique focuses on how efficiently QDs re-emit the light they absorb. The results suggest that, contrary to long-standing concerns, QDs are defect-tolerant and their emission is comparable to the best single-crystal emissions. “It was surprising that a film with many potential defects is as good as the...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: March 2019
    Glossary
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    luminescence
    Luminescence is the emission of light that occurs without the involved substance undergoing a significant increase in temperature. In other words, it is the production and emission of light by a material or substance, often as a result of electronic, molecular, or atomic transitions. Luminescence is a broad term that encompasses various phenomena, including fluorescence, phosphorescence, chemiluminescence, and bioluminescence: Fluorescence: In fluorescence, a substance absorbs light...
    Research & TechnologyeducationStanford UniversityAmericasLight SourcesMaterialsphotovoltaicsConsumersolarBiophotonicsquantum dotsluminescencesemiconductors

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.