Search
Menu
PI Physik Instrumente - Revolution In Photonics Align LW LB 3/24

Quantum Sensors in Diamond Anvils Measure Materials Under Pressure

Facebook X LinkedIn Email
To develop new, high-performance optical and electronic materials, scientists need to measure how material properties such as magnetism and strength change under extreme conditions. Diamond anvil cells have made it possible for scientists to safely re-create these conditions in the lab, but most conventional sensors cannot be used to measure the experimental results, because they cannot withstand the crushing forces inside a diamond anvil cell. A team of scientists led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and University of...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2020
    Glossary
    quantum
    The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
    Research & TechnologyeducationAmericasMaterialsquantumSensors & Detectorsdiamonddiamond anvil cellsNV centersindustrialUniversity of CaliforniaBerkeleyLawrence Berkeley National LaboratoryspectroscopyTest & MeasurementTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.