Search
Menu
AdTech Ceramics - Ceramic Packages 1-24 LB

Study of Perovskites Uncovers New State of Matter

Facebook X LinkedIn Email
McGill University researchers set out to uncover the secrets of perovskite’s ability to act as a semiconductor, even with structural defects. In doing so, they have discovered what amounts to a new state of matter. Perovskites have garnered attention in the last decade due to their ability to act as a semiconductor even with the presence of defects within the material’s crystal structure. Traditionally, semiconductors need near-perfect crystals to be effective, which requires ultraprecise (and costly and stringent) methods for their manufacture. The distortion of the...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: June 2021
    Glossary
    exciton
    An exciton is a quasiparticle that represents the bound state of an electron and a hole in a solid-state material, typically a semiconductor or an insulator. In simpler terms, an exciton is a paired electron and hole created when an electron absorbs a photon and is promoted to a higher energy state, leaving behind an empty state called a hole. Key characteristics of excitons include: Formation: Excitons are formed when an electron in the valence band of a material is excited to the...
    quantum
    The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    quantum confinement
    Quantum confinement refers to the phenomenon in quantum mechanics where the motion of charge carriers, such as electrons or holes, is restricted to a region of space that is smaller than their wavelength. This confinement occurs in nanoscale structures, such as semiconductor nanoparticles or quantum dots, where the dimensions of the structure are comparable to or smaller than the de Broglie wavelength of the charge carriers. The de Broglie wavelength is an important concept in quantum...
    Research & TechnologyMaterialspolaronspolaronexcitonquantumquantum dotquantum dotsquantum confinementMcgillMcGill UniversityPatanjali Kambhampatispectroscopymatterstate of matterTech Pulse

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.