Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Ultra-intense Laser Achieves Efficient Direct Ion Acceleration

Facebook Twitter LinkedIn Email
Osaka University researchers, in collaboration with the National Institutes for Quantum Science and Technology (QST), Kobe University, and National Central University in Taiwan, have reported direct energetic ion acceleration by irradiating what they claim to be the world’s thinnest and strongest graphene target with the ultra-intense J-KAREN laser at Kansai Photon Science Institute at QST in Japan. Thin targets are necessary for higher ion energy in laser ion acceleration. However, it’s been difficult to directly accelerate ions with an extremely thin target regime because...Read full article

Related content from Photonics Media



    ARTICLES


    PRODUCTS


    PHOTONICS HANDBOOK ARTICLES


    WHITEPAPERS


    WEBINARS


    PHOTONICS DICTIONARY TERMS


    MEDIA


    PHOTONICS BUYERS' GUIDE CATEGORIES


    COMPANIES
    Photonics Spectra
    May 2022
    GLOSSARY
    target
    1. The anode or anticathode of an x-ray tube that emits x-rays when bombarded by electrons. 2. The screen in a television imaging tube that is scanned by an electron beam to determine the charge-density stored on it.
    Research & Technologylasersmaterialsion accelerationgraphene2D materialsplasma mirrortargetOsaka UniversityNational Institutes for Quantum Science and TechnologyKobe UniversityNational Central UniversityAsia-PacificTechnology News

    back to top
    Facebook Twitter Instagram LinkedIn YouTube RSS
    ©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

    Photonics Media, Laurin Publishing
    x Subscribe to Photonics Spectra magazine - FREE!
    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.