Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Ultrafast phase changes observed in graphite

Facebook Twitter LinkedIn Email
STANFORD, Calif., May 23, 2012 — Graphite once again has been shown to have ground-breaking potential due to its ability to phase change from a liquid to a warm-dense plasma in just 40 fs. Researchers using the Linac Coherent Light Source (LCLS) X-ray Free-Electron Laser (XFEL) at the SLAC National Accelerator Laboratory at Stanford University used various pulse lengths and spectra to heat a sample of graphite to the point where it would phase change from solid to liquid, and then to a warm-dense plasma. What is remarkable is that the graphite made these phase changes in about 40 fs. Demonstration of ultrafast...Read full article

Related content from Photonics Media



    ARTICLES


    PRODUCTS


    PHOTONICS HANDBOOK ARTICLES


    WHITEPAPERS


    WEBINARS


    PHOTONICS DICTIONARY TERMS


    MEDIA


    PHOTONICS BUYERS' GUIDE CATEGORIES


    COMPANIES
    Photonics.com
    May 2012
    Alexander GrafAmericasCarsten FormannCenter for Free Electron Laser ScienceEuropegraphiteJoe BradleyLawrence Livermore National LaboratoryLCLSLinac coherent light sourceMatthias FrankMax Planck Advanced Study GroupMax Planck Institute for Medical ResearchMax Planck Institute for Nuclear Physicsphase changeResearch & TechnologyRich LondonSiegfried GlenzerSLAC National Accelerator LaboratoryStanford UniversityStefan Hau-RiegeTilo DoppnerUniversity of Duisburg-Essenwarm-dense plasmax-ray free-electron laserXFELlasers

    back to top
    Facebook Twitter Instagram LinkedIn YouTube RSS
    ©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

    Photonics Media, Laurin Publishing
    x We deliver – right to your inbox. Subscribe FREE to our newsletters.
    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.