Search
Menu

Research Teams Offer New Insight into Mid-IR, Graphene-Based Metasurfaces

Facebook X LinkedIn Email
A team of researchers has described a method of designing metamolecules that incorporate two independently controllable subwavelength meta-atoms. This two-parametric control of the metamolecule secures the complete control of both amplitude and the phase of light.

A Korea Advanced Institute of Science and Technology (KAIST) research team in collaboration with the University of Wisconsin-Madison theoretically suggested a graphene-based active metasurface capable of independent amplitude and phase control of mid-infrared light. The research provides new insight into modulating the mid-infrared wavefront with high resolution by solving the problem of the independent control of light amplitude and phase, which has remained a long-standing challenge.
This is a schematic image of graphene plasmonic metamolecules capable of independent amplitude and phase control of light. Courtesy of KAIST.
This is a schematic image of graphene plasmonic metamolecules capable of independent amplitude and phase control of light. Courtesy of KAIST.

Light modulation technology is essential for developing future optical devices such as holography, high-resolution imaging, and optical communication systems. Liquid crystals and a microelectromechanical system (MEMS) have previously been used to modulate light. However both methods suffer from significantly limited driving speeds and unit pixel sizes larger than the diffraction limit, which consequently prevent their integration into photonic systems.

The metasurface platform is considered a strong candidate for the next generation of light modulation technology. Metasurfaces have optical properties that natural materials cannot have and can overcome the limitations of conventional optical systems, such as forming a high-resolution image beyond the diffraction limit. In particular, the active metasurface is regarded as a technology with a wide range of applications due to its tunable optical characteristics with an electrical signal.


Previous active metasurfaces suffered from the inevitable correlation between light amplitude control and phase control. This problem is caused by the modulation mechanism of conventional metasurfaces. Conventional metasurfaces have been designed such that a metaatom only has one resonance condition, but a single resonant design is regarded as a technology with a wide range of applications due to its tunable optical characteristics with an electrical signal.

The research team created a metaunit by combining two independently controllable metaatoms, dramatically improving the modulation range of active metasurfaces. The proposed metasurface can control the amplitude and phase of the mid-infrared light independently with a resolution beyond the diffraction limit, thus allowing complete control of the optical wavefront.

The team theoretically confirmed the performance of the proposed active metasurface and the possibility of wavefront shape using this design method. Furthermore, they developed an analytical method that can approximate the optical properties of metasurfaces without complex electromagnetic simulations. This analytical platform proposes a more intuitive and comprehensively applicable metasurface design guideline.

The proposed technology is expected to enable accurate wavefront shaping with a much higher spatial resolution than existing wavefront shaping technologies, which will be applied to active optical systems such as mid-infrared holography, high-speed beam-steering devices that can be applied for lidar, and variable focus infrared lenses.

Professor Min Seok Hang said, “This study showed the independent control amplitude and phase of light, which has been a long-standing quest in light modulator technology. The development of optical devices using complex wavefront control is expected to become more active in the future.”

The research was published in ACS Nano (www.dx.doi.org/10.1021/acsnano.9b09277).

Published: March 2020
Glossary
graphene
Graphene is a two-dimensional allotrope of carbon consisting of a single layer of carbon atoms arranged in a hexagonal lattice pattern. It is the basic building block of other carbon-based materials such as graphite, carbon nanotubes, and fullerenes (e.g., buckyballs). Graphene has garnered significant attention due to its remarkable properties, making it one of the most studied materials in the field of nanotechnology. Key properties of graphene include: Two-dimensional structure:...
Research & Technologygraphenemetasurfacelight modulationphase controlKAISTMEMSTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.