Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Researchers Awarded $1M for Method to Evaluate Quality of Turbine Components Created with Laser Powder Bed Fusion

Facebook Twitter LinkedIn Email Comments
PITTSBURGH, July 23, 2019 — The University of Pittsburgh's Swanson School of Engineering has been awarded $802,400 to find an effective quality assurance method for additive manufacturing or 3D-printing of new-generation gas turbine components. The components are created using laser powder bed fusion (LPBF) technology, a process that uses the heat of a laser to consolidate material into powder form to generate 3D objects.

The U.S. Department of Energy, through its University Turbine Systems Research program, has awarded the funds to researchers at the Swanson School to conduct the three-year project, which is being bolstered by additional support of $200,600 from the University of Pittsburgh (Pitt), resulting in a total grant of $1,003,000. 
Xiayun Zhao, PhD, assistant professor of mechanical engineering and materials science, (left) and Albert To, PhD, associate professor of mechanical engineering and materials science, hold up a 3D printed turbine component in the lab. (Courtesy of University of Pittsburgh)


Xiayun Zhao (left), with Albert To, holds up a 3D-printed turbine component in the lab. Courtesy of the University of Pittsburgh.

Xiayun (Sharon) Zhao, assistant professor of mechanical engineering and materials science at Pitt, will lead the research. She'll work with Albert To, associate professor of mechanical engineering and materials science at Pitt, and Richard W. Neu, professor in the Georgia Institute of Technology's School of Mechanical Engineering.

The team will use machine learning to develop a cost-effective method for rapidly evaluating, either in-process or offline, the hot gas path turbine components (HGPTCs) that are created with LPBF additive manufacturing (AM) technology.

Zhao said HGPTCs have a tendency toward porous defects, which makes them more susceptible to overheating.

"LPBF AM is capable of making complex metal components with reduced cost of material and time. There is a desire to employ the appealing AM technology to fabricate sophisticated HGPTCs that can withstand higher working temperature for next-generation turbines,” she said. “It's critical to have a good quality assurance method before putting them to use. The quality assurance framework we are developing will immensely reduce the cost of testing and quality control and enhance confidence in adopting the LPBF process to fabricate demanding HGPTCs."


Photonics.com
Jul 2019
BusinessAmericasawardslasershot gas path turbine componentslaser powder bed fusion

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.