Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Researchers Control Speed of Light in Free Space

Facebook Twitter LinkedIn Email
ORLANDO, Fla., April 5, 2019 — Using a technique that someday could help alleviate data congestion and prevent information loss, University of Central Florida (UCF) researchers are able to speed up and slow down a light pulse in free space. The new technique allows the speed of the pulse to be adjusted without the use of any pass-through material to speed it up or slow it down. 

The researchers used a phase-only spatial light modulator (SLM) to synthesize space-time (ST) wave packets and control the velocity of the pulse. The SLM was used to efficiently sculpt the field spatio-temporal spectrum and modify the group velocity.  In experiments, when the researchers modulated the spatial and temporal degrees of freedom jointly, they observed arbitrary group velocities in free space above or below the speed of light in vacuum, whether in the forward direction propagating away from the source or even traveling backward toward it.

“We’re able to control the speed of the pulse by going into the pulse itself and reorganizing its energy such that its space and time degrees of freedom are mixed in with each other,” professor Ayman Abouraddy said.

The results could help point the way to schemes for phase matching in nonlinear optical processes and new types of laser-plasma interactions. “This is the first clear demonstration of controlling the speed of a pulse light in free space,” Abouraddy said. “And it opens up doors for many applications, an optical buffer being just one of them, but most importantly it’s done in a simple way that’s repeatable and reliable.”

The research was published in Nature Communications (
Apr 2019
optical communications
The transmission and reception of information by optical devices and sensors.
Research & TechnologyeducationAmericaslight sourcesopticsoptical physicsUniversity of Central Floridaspatial light modulatorCommunicationsoptical communicationsspeed of light

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.