Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Researchers Demonstrate Cost-Effective, Scalable Lithium PICs

Facebook Twitter LinkedIn Email Comments
CAMBRIDGE, Mass., Aug. 28, 2020 — A joint effort from HyperLight and Harvard University has achieved a technical milestone for lithium niobate photonic integrated circuits (PICs). The work demonstrates lithium niobate PICs' compatibility with mass production technologies. The technology aims to alleviate bottlenecks in data center and telecommunications networks while minimizing energy consumption.

The team achieved fabrication on 4- and 6-in. wafers and used deep ultraviolet lithography and smooth and uniform etching to realize 0.27 dB/cm optical propagation loss on wafer scale, allowing efficient light guiding.

According to Kevin Luke, the research paper lead author and head of manufacturing at HyperLight, the devices are not limited to high-end applications, but can be mass produced at competitive price points. The technology, he said, will have a broad impact on performance and cost-sensitive technologies such as data center networking, 5G radio communication systems, and automotive lidar.

Lithium niobate has significant performance advantages over silicon for use in PICs, though manufacturing at larger scales has proved challenging. Silicon has been able to leverage existing fabrication infrastructure from the CMOS transistor industry, though this research shows that lithium niobate can use the same fabrication tools.

“Such PICs will allow for unprecedented control of temporal and spectral properties of photons, which is essential for realization of photonic quantum computers,” said Marko Loncar, co-founder and chief sciences adviser at HyperLight and a professor at Harvard University.

The research was published in Optics Express (www.doi.org/10.1364/OE.401959).

Photonics.com
Aug 2020
GLOSSARY
wafer
A cross-sectional slice cut from an ingot of either single-crystal, fused, polycrystalline or amorphous material that has refined surfaces either lapped or polished. Wafers are used either as substrates for electronic device manufacturing or as optics. Typically, they are made of silicon, quartz, gallium arsenide or indium phosphide.
Research & Technologyphotonic integrated circuitsphotonic integrated chipsphotonic integrated circuits technologysiliconsilicon bottlenecksilicon photonicslithiumlithium niobatewaferUV lithographyPICTech Pulse

Comments
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.