Researchers Use 3D Printer to Print Chalcogenide Glass

Facebook X LinkedIn Email
QUEBEC CITY, Canada, April 23, 2019 — For the first time, researchers have successfully 3D-printed chalcogenide glass, a unique material used to make optical components that operate at mid-IR wavelengths.

The ability to 3D print this glass could make it possible to manufacture complex glass components and optical fibers for new types of low-cost sensors, telecommunications components, and biomedical devices.

Researcher Patrick Larochelle and his colleagues from the Centre d’Optique, Photonique et Laser (COPL) at Université Laval in Canada described how they modified a commercially available 3D printer for glass extrusion. The new method is based on the commonly used technique of fused deposition modeling, in which a plastic filament is melted and then extruded layer by layer to create detailed 3D objects.

Researchers demonstrated 3D printing of chalcogenide glass, which can be used to make optical components that operate at mid-infrared wavelengths. This 3D printed glass sample is 14 millimeters long. (Courtesy of Steeve Morency, Université Laval)
Researchers demonstrated 3D printing of chalcogenide glass, which can be used to make optical components that operate at mid-IR wavelengths. This 3D-printed glass sample is 14 mm long. Courtesy of Steeve Morency, Université Laval.

“3D printing of optical materials will pave the way for a new era of designing and combining materials to produce the photonic components and fibers of the future,” said Yannick Ledemi, a member of the research team. “This new method could potentially result in a breakthrough for efficient manufacturing of infrared optical components at a low cost.”

Chalcogenide glass softens at a relatively low temperature compared to other glass. The research team therefore increased the maximum extruding temperature of a commercial 3D printer from around 260 °C to 330 °C to enable chalcogenide glass extrusion. They produced chalcogenide glass filaments with dimensions similar to the commercial plastic filaments normally used with the 3D printer. Finally, the printer was programmed to create two samples with complex shapes and dimensions.

“Our approach is very well suited for soft chalcogenide glass, but alternative approaches are also being explored to print other types of glass,” Ledemi said. “This could allow fabrication of components made of multiple materials. Glass could also be combined with polymers with specialized electro-conductive or optical properties to produce multifunctional 3D-printed devices.”

3D printing would also be useful for making fiber preforms – pieces of glass that are pulled into fiber – with complex geometries or multiple materials, or a combination of both. According to the researchers, once the design and fabrication techniques are fine-tuned, 3D printing could be used for inexpensive manufacturing of high volumes of IR glass components or fiber preforms.

“3D-printed chalcogenide-based components would be useful for infrared thermal imaging for defense and security applications,” Ledemi added. “They would also enable sensors for pollutant monitoring, biomedicine, and other applications where the infrared chemical signature of molecules is used for detection and diagnosis.”

The researchers are now working to improve the design of the printer to increase its performance and enable additive manufacturing of complex parts or components made of chalcogenide glass. They also want to add new extruders to enable coprinting with polymers for the development of multimaterial components.

The research is part of the PRinting of exOtic multi-maTErial fibers, or PROTEus, project conducted within the frame of the International Associated Laboratory Lumière Matière Aquitaine Québec (LIA-LuMAQ). PROTEus brings together researchers from Canada and France to develop new ways to use additive manufacturing and direct laser writing methods to combine multiple materials to make fiber-based photonic components and devices.

The research appeared in Optical Materials Express, a publication of OSA, The Optical Society (

Published: April 2019
3d printing
3D printing, also known as additive manufacturing (AM), is a manufacturing process that builds three-dimensional objects layer by layer from a digital model. This technology allows the creation of complex and customized structures that would be challenging or impossible with traditional manufacturing methods. The process typically involves the following key steps: Digital design: A three-dimensional digital model of the object is created using computer-aided design (CAD) software. This...
Research & TechnologyEurope3D printed glasschalcogenide glassoptical fibersMaterialsfiber opticsCommunicationsoptical components3d printing

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.