Researchers Use Light Waves to Study Topological Materials

Facebook X LinkedIn Email
The laws of quantum physics tell us that electrons behave like waves; and in some materials, these electron waves can take on complicated shapes. So-called “topological materials” produce electron states that can be useful, but it is difficult to identify these materials and their associated electronic states.

To identify these “topological materials,” scientists from TU Wien (Vienna University of Technology) and the University of Science and Technology of China created a “crystal” made of light waves. The crystal was used to hold atoms in a geometric pattern. With the help of interfering light waves, the atoms could be held in predefined places, creating a regular pattern, similar to a crystal grid. The team said that in this “crystal grid,” the role of the atoms can be compared to the role of the electrons in a solid-state crystal.

Using light waves to study topological materials, TU Wien, University of Science & Technology of China.
The spin structure in the atoms in the crystal made of light. It is possible to switch between simple and complex states. Courtesy of TU Wien.

The crystal could also be used to drive the system (that is, the pattern of atoms) out of equilibrium.

By changing the light wavelength, the geometry of the atomic arrangement could be switched. The new arrangement could be used to investigate how the electron states would behave in an actual solid-state material. By switching the atomic arrangement between simple and complicated states, topologically interesting states in the system were revealed.

“With this change, a massive imbalance is suddenly being generated,” said professor Jörg Schmiedmayer. “The quantum states must rearrange and approach a new equilibrium, much like balls rolling down a hill until they find equilibrium in the valley. And during this process we can see clear signatures that tell us whether topologically interesting states are to be found or not.”

Using light waves to study topological materials, TU Wien, Univ. of Science & Technology of China.
A topologically trivial band structure (left), much like a valley in which a rolling ball approaches the lowest point. The structure on the right is more complex. Courtesy of TU Wien.

The results could help further studies on topological states of matter — an area of research that was awarded the Nobel Prize in Physics in 2016. The artificial light crystals could even be adapted to simulate certain crystal structures in order to find new topological materials, suggest the researchers.

It is still considered extremely difficult to determine whether or not a certain material allows topologically interesting quantum states. “Quantum states that are not in equilibrium, are changing rapidly,” said Schmiedmayer. “This dynamic is notoriously difficult to understand, but as we have shown, it is a great way to obtain extremely interesting information about the system.

The research was published in Physical Review Letters ( 

Published: January 2019
Optoelectronics is a branch of electronics that focuses on the study and application of devices and systems that use light and its interactions with different materials. The term "optoelectronics" is a combination of "optics" and "electronics," reflecting the interdisciplinary nature of this field. Optoelectronic devices convert electrical signals into optical signals or vice versa, making them crucial in various technologies. Some key components and applications of optoelectronics include: ...
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
Research & TechnologyeducationEuropeAsia-PacificTU WienUniversity of Science and Technology of ChinaLight SourcesMaterialstopological materialsOpticsquantum stateoptoelectronicsquantumTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.