Search
Menu
PI Physik Instrumente - Revolution In Photonics Align LW LB 3/24

Reusable Substrate Enhances Raman Signal by Factor of 50

Facebook X LinkedIn Email
KIEL, Germany, March 31, 2023 — Materials scientists at Kiel University have developed a photoinduced enhanced Raman spectroscopy (PIERS) method to detect analytes at concentrations one to three orders of magnitude lower than that which can be achieved using classical surface-enhanced Raman spectroscopy (SERS). The method stems from the researchers’ development of a novel substrate with plasmonic and photocatalytic nanostructures that increases sensitivity, spatial, and temporal resolution.

Further, the substrate, called 4N-in-1, can be reused at least 20 times without loss of its Raman activity by simple photocatalytic degradation, the researchers said.

PIERS is an extension of the SERS method,  which itself is widely considered for use in biochemistry, forensics, food safety, threat detection, and medical diagnostics. SERS extends the range of Raman applications to trace analysis, such as part-per-million-level detection of a pollutant in water or other liquids, for example.

To extend use of the method further into industrial and clinical use cases, inexpensive and reliable SERS substrates are needed to allow reproducible spectral signals.

The nanostructured and reusable substrate developed by the researchers led to 50 times more powerful analysis than classical SERS obtains.

The researchers created a novel surface (4N-in-1) composed of nanocolumnar structures, nanocrack network, nanoscale mixed oxide phases, and nanometallic structures. This surface functioned as a PIERS substrate, and it enhanced the Raman signal and provided a high detection sensitivity. 

In addition to the plasmonic nanostructures, the substrate is composed of an extremely active layer of titanium dioxide, study co-author Salih Veziroglu said.

Rocky Mountain Instruments - Custom Assemblies MR
Scanning electron microscopy reveals shows the surface of the novel substrate. The researchers from Kiel University team constructed it with various nanostructures, including as silver particles, which amplified the Raman signal upon laser light interaction(s). Courtesy of Kiel University.
Scanning electron microscopy reveals the surface of the novel substrate. The researchers from Kiel University constructed it with various nanostructures, including silver particles, which amplified the Raman signal upon laser light interaction. Courtesy of Kiel University.
Using the substrate, before and after materials analysis, the researchers irradiated the substrate with UV light for activation and cleanup, respectively. “This way the analyte is decomposed and the substrate, which is quite costly, can be reused several times,” said professor and study co-author Oral Cenk Aktas.

The researchers look to transfer their findings from fundamental research into application; since the substrate can easily be combined with any type of Raman spectroscopy, they believe that the surface could be used for multiple, different applications. As they seek to bring the method to market, they plan to combine the method with AI to create a comprehensive database for materials analysis. This could enable faster and more precise detection of individual molecules.

Veziroglu’s research on the substrate materials was partly funded with a grant from Kiel Nano, Surface, and Interface Science (KiNSIS), a priority research area of Kiel University.

The research was published in Small (www.doi.org/10.1002/smll.202270271).

Published: March 2023
Glossary
plasmonics
Plasmonics is a field of science and technology that focuses on the interaction between electromagnetic radiation and free electrons in a metal or semiconductor at the nanoscale. Specifically, plasmonics deals with the collective oscillations of these free electrons, known as surface plasmons, which can confine and manipulate light on the nanometer scale. Surface plasmons are formed when incident photons couple with the conduction electrons at the interface between a metal or semiconductor...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
MaterialsMaterials & Coatingssubstratespectroscopysurfacessurface enhanced Raman spectroscopy (SERS)photoinduced enhanced Raman spectroscopy (PIERS)EuropeResearch & TechnologyeducationKiel Universityplasmonicsnanomaterialsnanonanofluidic analytic platformsplasmonic photocatalysisphotocatalysistitanium dioxidesilverinterfaces

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.