Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Roll-to-Roll Nano Sensors Enhance Manufacturing Opportunities

Facebook Twitter LinkedIn Email Comments
Roll-to-roll mass manufacturing is a key technology in low-cost disposable photonic sensor production, which could pave the way for new business and job opportunities, particularly for small and medium enterprises.

Photosens, a European consortium project led by VTT Technical Research Centre of Finland, is developing a polymer-based nanophotonic sensor that can be mass produced for environmental applications, pharmaceutical process cleanliness and food safety applications.

“The Photosens project has developed a novel and highly cost-effective manufacturing method for periodic nanostructures, which form the basis of most SERS [surface-enhanced Raman scattering] substrates,” said David Eustace of Renishaw Diagnostics in Scotland, a member of the consortium. He added that these developments “open up a new range of applications for this highly sensitive and selective analytical technique.”

Currently, utilization of multiparameter sensing is hindered by the lack of low-cost and highly reproducible fabrication methods for nanostructured surfaces. Photosens’ development of roll-to-roll nanoimprinting manufacturing addresses these challenges.

“It was a challenge and very interesting to see that molecularly imprinted polymers can, in principle, be implemented into mass-manufactured sensor systems,” said Peter Lieberzeit of the University of Vienna, a member of the consortium. “Photosens has played a seminal role in bringing such systems forward on their way from academia to application.”

A multiparameter sensor array uses photonic crystal (PC) and SERS methodologies. Integrating the PC- and SERS-based sensors with integrated optics-coupling structures within a single sensor platform allows the implementation of a high-performance multiparameter sensor.

“The combination of smart sensing layers and the nanophotonic sensing principle performed in mass-manufacturable plastic chips opens the possibility for [applications such as] inexpensive disposable gas sensing elements,” said Arjen Boersma of Netherlands-based TNO, a member of the consortium.

Additional project partners include the University of Southampton in England, Momentive in Germany, Nanocomp in Finland, 3-D AG of Switzerland, and Philips in the Netherlands.

For more information, visit:

Photonics Spectra
May 2014
BiophotonicsBusinessEnglandEuropeFinlandGermanyindustrialmaterialsnanoNanocompNetherlandsopticsPCPhilipsphotonic crystalResearch & Technologyroll-to-roll manufacturingScotlandSERSspectroscopysurface-enhanced Raman scatteringSwitzerlandTech PulseTNOUniversity of SouthamptonUniversity of ViennaVTT Technical Research CentrePhotosensphotonic sensorRenishaw DiagnosticsMomentive3-D AG

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.