Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

SWIR Camera From Princeton Instruments Selected for MIT Research

Facebook Twitter LinkedIn Email
The NIRvana camera from Princeton Instruments was employed in quantum dot evaluation by researchers at the Massachusetts Institute of Technology (MIT).

From high-speed intravital imaging for angiography in a brain tumor model to high resolution and high-speed SWIR intravital imaging to generate flow maps of microvascular networks using QD composite particles.
From high-speed intravital imaging for angiography in a brain tumor model to high resolution and high-speed SWIR intravital imaging to generate flow maps of microvascular networks using QD composite particles. Courtesy of Bawendi Lab/MIT.

The new class of high-quality, indium-arsenide-based, SWIR–emitting quantum dots have been designed for use as in vivo imaging agents. To demonstrate a few of the key capabilities of the quantum dots, SWIR imaging performed with a Princeton Instruments NIRvana camera was utilized to measure the heartbeat and breathing rates in awake and unrestrained mice, as well as to quantify the lipoprotein turnover rates of several organs simultaneously in real-time in the mice. The MIT researchers also generated detailed 3D quantitative flow maps of brain vasculature by intravital microscopy, visualizing the differences between healthy tissue and a tumor in the brain.

These quantum dots permit biological multicolor-optical imaging with an unprecedented combination of deep penetration, high spatial resolution and fast acquisition speed.

Princeton Instruments designs and manufactures high-performance CCD, ICCD, EMCCD, emICCD, InGaAs and back-illuminated sCMOS cameras; high-throughput spectrographs; complete spectroscopy systems; and optics-based solutions for the scientific research, industrial imaging and OEM industries.


BioPhotonics
Sep 2017
GLOSSARY
quantum dots
Also known as QDs. Nanocrystals of semiconductor materials that fluoresce when excited by external light sources, primarily in narrow visible and near-infrared regions; they are commonly used as alternatives to organic dyes.
BusinessNIRvana camerasCMOSPrinceton InstrumentsMassachusetts Institute of TechnologyMITquantum dotsAmericasRapidScan

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.