Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Scientists Apply Raman Spectroscopy to COVID-19 Testing

Facebook Twitter LinkedIn Email
One of the most challenging aspects of the COVID-19 pandemic has been the lack of testing needed to detect and trace infections. Many tests use biochemicals that can be expensive and difficult to produce. These tests can require long turnaround times for test results and can produce a high number of false negative results.

A Northern Arizona University (NAU) research team, led by professor Miguel José Yacamán, is developing a new test technology for SARS-CoV-2 using single-molecule surface-enhanced Raman spectroscopy (SM-SERS). The researchers are applying concepts from the fields of nanotechnology, plasmonics, and 2D materials to their development process. “The project team will use nontraditional techniques to detect virus in infected patients,” Yacamán said. “We will develop an alternative method based on recent advances in physics related to the interaction of light with matter.”

NAU physicist and materials scientist Miguel José Yacamán is leading an interdisciplinary team to develop a new test technology for the coronavirus that is based on physics, not biochemicals, that could overcome the challenges presented by current shortages of test kits and test efficacy. Courtesy of Northern Arizona University.

NAU physicist and materials scientist Miguel José Yacamán is leading an interdisciplinary team to develop a new test technology for the coronavirus that is based on physics, not biochemicals, that could overcome the challenges presented by current shortages of test kits and test efficacy. Courtesy of Northern Arizona University.


The researchers will use SM-SERS to detect the S proteins of the SARs-Cov-2 virus, which are involved in infection at the cellular level. Yacamán previously used SERS to detect glycoproteins and sialic acid as a method of testing for breast cancer. This testing approach is now in the final approval stage for commercial use. 

Yacamán believes that his team’s research into SARS-CoV-2 testing could be the first step in developing a physics-based testing approach that would be fast and inexpensive, provide high sensitivity and specificity, and deliver a low percentage of false negatives. “This test will be a much more precise and reliable method to detect infections,” he said.

Once the test is developed, portable Raman equipment could allow the test to be used widely in many different populations — for example, in rural or remote communities or in point-of-care stations in schools, factories, and community centers, in addition to traditional testing sites.

The project is a joint effort between researchers in the Center for Materials Interfaces in Research and Applications (¡MIRA!), who will develop the new testing technology, and scientists in the Pathogen and Microbiome Institute (PMI), who will grow the SARS-CoV-2 virus in their labs.

The project, called “Development of a New Test for SARS-CoV-2 Using Single Molecule Surface Enhanced Raman Spectroscopy,” was awarded a $200,000 grant from the National Science Foundation’s Rapid Response Research (RAPID) funding program supporting virus-related research. Although the team has one year to develop the new test, Yacamán plans to achieve this goal sooner. “Once widespread testing is underway, further analysis of the SM-SERS data will help scientists understand changes on the virus proteins and help develop antiviral drugs,” he said.

BioPhotonics
Jul/Aug 2020
GLOSSARY
nanotechnology
The use of atoms, molecules and molecular-scale structures to enhance existing technology and develop new materials and devices. The goal of this technology is to manipulate atomic and molecular particles to create devices that are thousands of times smaller and faster than those of the current microtechnologies.
raman spectroscopy
That branch of spectroscopy concerned with Raman spectra and used to provide a means of studying pure rotational, pure vibrational and rotation-vibration energy changes in the ground level of molecules. Raman spectroscopy is dependent on the collision of incident light quanta with the molecule, inducing the molecule to undergo the change.
single-molecule spectroscopy
An advanced technique that allows the detection of one molecule within a crystal or a cell through optical excitation. Single-molecule spectroscopy (SMS) can image at subwavelength scales, down to a dozen of nanometers. It has applications in various fields of natural science, including but not limited to biophysics, quantum physics and nanoscience. SMS helps clarify long-standing problems in chemistry and biology, such as observing and examining single molecules. It also provides critical...
Research & TechnologyeducationAmericasNorthern Arizona Universitylight sourceslight-matter interactionsspectroscopynanonanotechnologyplasmonicsmaterials2D materialsTest & Measurementsurface enhanced Raman spectroscopyRaman spectroscopysingle-molecule spectroscopyBiophotonicsmedicalCOVID-19coronavirusvirus testingSARS-CoV-2Tech PulseCOVID-19 News

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to BioPhotonics magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.