Search
Menu
Lumencor Inc. - ZIVA Light Engine 3-24 LB

SMILES Brighten Fluorescent Materials

Facebook X LinkedIn Email
A joint effort between researchers at Indiana University and the University of Copenhagen has yielded a new class of materials, called small-molecule ionic isolation lattices (SMILES), which the researchers say are the brightest fluorescent materials in existence.

To create this material, the researchers mixed a colored dye with a colorless solution of cyanostar, a star-shaped macrocycle molecule that prevents the fluorescent molecules from interacting as the mixture solidified, keeping their optical properties intact. As the mixture became a solid, SMILES formed, which the researchers then grew into crystals, precipitated into dry powders, and then finally spun into a thin film or incorporated directly into polymers.
This image shows glowing 3D-printed gyroids made with bright SMILES materials. Courtesy of Amar Flood.
Glowing 3D-printed gyroids made with bright SMILES materials. Courtesy of Amar Flood.

The materials overcome an old problem: “quenching.” While there are currently more than 100,000 different fluorescent dyes available, very few can be mixed and matched in predictable ways to create solid optical materials. Dyes tend to undergo quenching when they enter a solid state due to how they behave when packed close together, decreasing the intensity of their fluorescence to produce a more subdued glow.

“The problem of quenching and inter-dye coupling emerges when the dyes stand shoulder-to-shoulder inside solids,” said Amar Flood, a chemist at Indiana University and co-senior author on the study, along with Bo Laursen of the University of Copenhagen. “They cannot help but ‘touch’ each other. Like young children sitting at story time, they interfere with each other and stop behaving as individuals.”

Gentec Electro-Optics Inc   - Measure Your Laser MR

Because the cyanostar macrocyles form building blocks that generate a lattice-like checkerboard, the researchers could simply plug a dye into the lattice and, without further adjustments, the structure would take on its color and appearance.

Previous research had explored spacing dyes through the use of macrocycles; however, it relied on colored macrocycles. Flood and colleagues found that colorless macrocycles held an advantage in producing their desired results.

“Some people think that colorless macrocycles are unattractive, but they allowed the isolation lattice to fully express the bright fluorescence of the dyes unencumbered by the colors of the macrocycles,” Flood said.

Because the materials are so new, Flood said, their innate properties that offer superior functionality are not yet known, nor are the limits of the materials. The materials have potential applications in any technology that needs bright fluorescence or calls for designing optical properties, including solar energy harvesting, bioimaging, and lasers, Flood said.

The next step will be to explore the properties of the fluorescent materials to enable work with dye markers to realize the materials’ full potential in a variety of applications.

The research was published in Chem (www.doi.org/10.1016/j.chempr.2020.06.029).

Published: August 2020
Glossary
fluorescence
Fluorescence is a type of luminescence, which is the emission of light by a substance that has absorbed light or other electromagnetic radiation. Specifically, fluorescence involves the absorption of light at one wavelength and the subsequent re-emission of light at a longer wavelength. The emitted light occurs almost instantaneously and ceases when the excitation light source is removed. Key characteristics of fluorescence include: Excitation and emission wavelengths: Fluorescent materials...
optical materials
Materials that, by virtue of their optical characteristics (i.e. refractive index, dispersion, etc.), are used in optical elements. See crystal; glass; plastic lens.
Research & TechnologyfluorescenceMaterialsIndiana Universityoptical materialsUniversity of Copenhagenfluorescentfluorescent materialsfluorescent dyefluorescent dye moleculesfluorescent dyesmacrocycleTech Pulse

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.