Search
Menu

Self-Emergent Microcombs Flip Switch for Precision Timekeeping

Facebook X LinkedIn Email
GLASGOW, Scotland, Aug. 16, 2022 — Researchers from the universities of Strathclyde, Loughborough, and Sussex have demonstrated how optical clocks can be reliably switched on and made to keep running. The collaborators’ work resolves what had emerged as a persistent problem in the development of ultraprecise optical clocks and, specifically, the microcombs on which they rely to move from an “off” state to an “on” state.

The collaborators’ work used a fiber laser to realize a reliable, self-starting oscillation of microcavity solitons. The solitons are naturally robust to perturbations, the researchers said, and they recover spontaneously even after complete disruption.

Microcombs are the components that allow one to count the oscillation of the “atomic pendulum” of an atomic clock. The combs enable the conversion of the atomic oscillation at hundreds of trillions of times per second to a billion times a second — a gigahertz frequency that can be easily measured by modern electronic systems.

The difficulty is that microcombs, similar to the engine of a car, prefers the “off” state. To start a car, a starter motor is required to coax the larger engine into its “on” state.

“At the moment, microcombs do not have a good ‘starter motor.’ It is like having your car with the battery constantly broken, and you need someone to push it downhill every time you need to use it, hoping that it will start,” said Alessia Pasquazi, who began the project at the University of Sussex before moving to Loughborough University.

“A well-behaved microcomb uses a special type of wave, called a cavity-soliton,” she said. “If you imagine that usually a cavity-soliton disappears in a microcomb laser when someone simply talks in the room, you see that we have a problem here.”
An international team has demonstrated how ow optical clocks, which are designed to replace satellite navigation systems such as GPS and Galileo, can be reliably switched on and kept running. The researchers' advancement involves the "self-emergence" of solitons in a microcavity. Courtesy of the University of Strathclyde.
An international team has demonstrated how optical clocks, which are designed to replace satellite navigation systems such as GPS and Galileo, can be reliably switched on and kept running. The researchers' advancement involves the 'self-emergence' of solitons in a microcavity. Courtesy of the University of Strathclyde. 
According to Marco Peccianti, now the director of the Emergent Photonic Research Centre at Loughborough University, the researchers demonstrated a different type of wave that could be used with microcombs, which they called laser cavity solitons because they directly embedded the microchip into a standard laser. With those waves, the team saw a significant boost in efficiency.


“We have shown now that our soliton can be naturally turned into the only state of the system, and we call this process ‘self-emergence,’” Peccianti said.

“It works like a simple thermodynamical system, which is ruled by ‘global variables,’ like temperature and pressure,” said Juan Sebastian Totero Gongora, a research fellow in quantum technologies at Loughborough.

Work to commercialize the microcomb continues; according to Maxwell Rowley, who worked on the research at the University of Sussex and now works with CPI TMD Technologies, after setting the electrical current driving the laser to the appropriate value, it is guaranteed that the microcomb will operate in the desired soliton state.

“We have basically an ‘eternal engine’ — like ‘Snowpiercer’ if you watch it — which always comes back to the same state if something happens to disrupt it,” Pasquazi said.

The self-emergent microcombs will be directly used in optical fiber-based calcium ion references, which are being pursued under Innovate UK support and the leadership of Matthias Keller at the University of Sussex with CPI TMD Technologies, as well as in a collaboration on quantum technologies that includes co-author professor Roberto Morandotti at the Canadian Institut national de la recherche scientifique (INRS).

The research was published in Nature (www.doi.org/10.1038/s41586-022-04957-x).

Published: August 2022
Glossary
microcomb
A microcomb, short for microresonator frequency comb, is a novel photonic device that generates a precise series of evenly spaced optical frequencies, akin to the teeth of a comb, across a broad spectrum of wavelengths. It operates based on the phenomenon of Kerr frequency comb generation, which occurs in certain nonlinear optical resonators. Microcombs are typically fabricated from high-quality optical materials, such as silicon nitride or silicon dioxide, and have dimensions on the order of...
atomic clock
An atomic clock is a highly precise timekeeping device that uses the vibrations or oscillations of atoms as a reference for measuring time. The most common type of atomic clock uses the vibrations of atoms, typically cesium or rubidium atoms, to define the length of a second. The principle behind atomic clocks is based on the fundamental properties of atoms, which oscillate at extremely stable and predictable frequencies. The primary concept employed in atomic clocks is the phenomenon of...
optical clock
An optical clock is a highly precise and advanced timekeeping device that relies on the oscillations of electromagnetic radiation in the optical or ultraviolet part of the electromagnetic spectrum. Unlike traditional atomic clocks, which use microwave frequencies, optical clocks operate at much higher frequencies, typically involving transitions in atoms or ions at optical wavelengths. Optical clocks have the potential to provide unprecedented accuracy and stability in timekeeping. Key points...
quantum
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
Research & TechnologyOpticsmicrocombatomic clockoptical clockLasersnavigationGPStelecommunicationUniversity of SussexLoughborough UniversityUniversity of StrathclydeEmergent Photonic Research CentrequantumCPI TMD TechnologiesCity University of Hong KongXi’an Institute of Optics and Precision MechanicsSwinburne University of TechnologyINRS-EMTEuropeAsia-Pacificsolitons

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.