Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Semiconductor Manipulates IR Light

Facebook Twitter LinkedIn Email
SANTA BARBARA, Calif., April 11, 2014 — A nanostructure-embedded semiconductor that manipulates light in the IR/terahertz range could benefit applications from imaging to energy efficiency, telecommunications and more.

An artist's rendering of nanoscale metallic wires and metallic particles embedded in semiconductors. Courtesy of Peter Allen, UCSB.

Developed by a team from the University of California, Santa Barbara, the technology uses erbium, a rare-earth metal that has the ability to absorb light in the visible as well as infrared wavelengths.

Pairing it with antimony (Sb), the researchers embedded the resulting compound, erbium antimonide (ErSb), as semimetallic nanostructures within the semiconducting matrix of gallium antimonide (GaSb).

“The nanostructures are coherently embedded without introducing noticeable defects, through the growth process by molecular beam epitaxy,” said Dr. Hong Lu, a researcher in UCSB’s materials and electrical and computer engineering departments, and a lead author of the study. “Secondly, we can control the size, the shape and the orientation of the nanostructures.”

The ErSb/GaSb combination is ideal because of its structural compatibility with surrounding materials, the researchers noted. It allowed them to embed the nanostructures without interrupting the atomic lattice structure of the semiconducting matrix.

Potential functions for the new semiconductor include development of more efficient solar cells, more reliable and higher-resolution biological imaging, medical applications to fight cancer, applications in the new field of plasmonics and the ability to transmit massive amounts of data at higher speeds.

A variety of optics- and electronics-based applications could benefit as well.

The research is published in Nano Letters. (doi: 10.1021/nl402436g

For more information, visit:
Apr 2014
AmericasantimonyatomsBiophotonicsCaliforniaCommunicationsenergygallium antimonideGaSbimagingnanonanostructureopticsResearch & TechnologySanta BarbarasemiconductorstelecommunicationsUniversity of Californiainvisible IRerbium antimonideSbErSb

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.