Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Silicon Crystal Used as X-ray Resonator

Photonics Spectra
Jul 2000
Daniel S. Burgess

Short-wavelength light presents special difficulties for researchers. Hard x-rays have wavelengths thousands of times smaller than visible light, enabling them to skip the boundaries of common optical substances without changing their path. To x-rays, all materials have refractive indices close to 1, so the construction of traditional lenses, mirrors and filters to control them is all but impossible.

A team at the European Synchrotron Radiation Facility, however, has devised a technique that circumvents these problems. Reporting in the March 23 issue of Nature, the researchers describe how Bragg scattering of x-rays from a silicon crystal lattice can be used to construct a resonator for short pulses at these short wavelengths. The development may lead to the production of an x-ray Fabry-Perot etalon.

The group -- which includes researchers from the Institute of Crystallography and Structural Physics at the University of Erlangen-Nuremberg and Motoren und Turbinen Union GmbH in Munich, Germany -- machined a 150-mm cavity into a monolithic silicon crystal. Because the interatomic spacing of the atoms in the crystal lattice is on the order of 0.5 nm, it could store even the 100-ps, 0.78-Å x-rays produced by a synchrotron for up to 14 cycles.

No effective medium for amplifying light at these wavelengths is known, so it is unlikely that the resonator could soon be used to build an x-ray laser. By changing the spacing of the silicon walls in the cavity, however, the researchers believe that they will be able to select specific wavelengths from the relatively broad spectrum produced by the synchrotron. Coupling the device to the free-electron lasers that have been proposed in this range could further narrow the linewidth, enabling greater precision in x-ray crystallography and x-ray spectroscopy.

Basic ScienceResearch & TechnologyTech Pulse

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.