Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Simple, Safe Optochemical Sensor Relies on Light

Facebook Twitter LinkedIn Email
GIESSEN, Germany, May 23, 2012 — Using only the interaction between nanostructures and light, an optochemical sensor has been developed that is simpler, safer and more reliable than standard electrical sensors.

Researchers working on the European Union-funded Dotsense project have created an optical transducer using an array of a billion gallium nitride (GaN) and indium gallium nitride (InGaN) quantum dots within nanowires. They placed the wires in the liquid/gaseous environment to be monitored and shone an excitation light on it, inducing the photoluminescence properties of the nanostructures to change. The photoluminescent properties of the quantum dots change depending on the specific chemicals in the environment, leading to variations in the transducer’s light intensity, which can be read using common photodetectors.

Schematic setup of Dotsense integrated optical chemical sensor system. Chemically induced changes in the photoluminescence characteristics of the nano-optical transducer element (InGaN/GaN QD superlattice or InGaN/GaN NW heterostructure) are detected.

The system, which relies solely on light, is much easier to implement and much more sensitive than the standard practice of running current through nanostructures and measuring the resistance. The goal of the Dotsense project was merely to create a chemical sensor that did not rely on electrical contacts; the greatly increased sensitivity that came with it was a bonus.

"We take advantage of the chemical sensitivity and the high surface-to-volume ratio of the nanostructures without having to implement a more complicated processing technology. There's a lot less technological effort involved to deploy and use this kind of sensing system," said Martin Eickhoff, the Dotsense project coordinator at Justus Liebig University.

Furthermore, the new system is safer than the current one. Running electrical current through certain chemicals can be deadly, especially when there are pressurized or flammable chemicals. For this reason, they are a good match for sensor technology on aircrafts.

"On an aircraft, they could be used to monitor water quality, hydraulic fluid, gas leaks or fuel," Eickhoff said. "When we started the project, aeronautical applications were our main focus, but we soon realized that there are additional applications for this technology in many other industries."

The researchers believe that the new technology is very commercially viable because of its safety and reliability. Applications are also in home smoke alarms, health care and food processing. However, the technology is not ready for mass production just yet. Eickhoff said that much more research is needed. Part of the research team has created a spinoff project called Sinomics, which will continue development.

"I'm optimistic that over the coming years this technology will find several applications, and it will become cheaper and, hence, more commercially viable to start producing all-optical sensors," Eickhoff said.

The project received funding from the European Union's Seventh Framework Programme.

For more information, visit:
May 2012
quantum dots
Also known as QDs. Nanocrystals of semiconductor materials that fluoresce when excited by external light sources, primarily in narrow visible and near-infrared regions; they are commonly used as alternatives to organic dyes.
chemical sensingchemicalsDotsenseEuropegallium nitrideGermanyimagingindium galium nitrideJustus Liebig UniversityMartin Eickhoffnanonanowiresoptical transduceropticsquantum dotsResearch & TechnologySensors & DetectorsSeventh Framework ProgrammeSinomics

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.