Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Single-Atom Laser Realized

Facebook Twitter LinkedIn Email
INNSBRUCK, Austria, March 31, 2010 — Researchers in Austria have successfully realized a single-atom laser, an important step toward a fundamental understanding of laser operation in the few-atom limit, including systems based on semiconductor quantum dots or molecules.


A single calcium ion is confined in an ion trap and excited by external lasers. (Photo: C. Lackner)

A laser normally consists of a gain medium, which is electrically or optically pumped, inside a highly reflective optical cavity (or resonator). The light in the cavity bounces back and forth in the form of modes whereby it is amplified repeatedly. One of the distinctive features of a classical laser is the steep increase of output power when a certain pumping threshold is reached. At this point the gain (amplification by the medium) equals the losses as the light circulates through the cavity. This is caused by the amplification of the interaction between light and atoms: The more photons are present in a mode the stronger the amplification of the light in the mode. This stimulated emission is usually observed in macroscopic lasers comprising of many atoms and photons.

"Quantum" lasers have shown thresholdless lasing when there is strong coupling between an atom and a radiation field, but the existence of a threshold has been predicted. Rainer Blatt and Piet Schmidt and their team at the University of Innsbruck demonstrated and characterized a single-atom laser with and without threshold behavior by changing, or tuning, the strength of atom/light-field coupling.

"We have demonstrated that a laser threshold can be achieved at the single-atom level, although much less pronounced compared with classical lasers as a consequence of the low photon number in the lasing mode," the researchers wrote in their paper on the work, which appears this week in the journal Nature Physics.

In their research, a single calcium ion is confined in an ion trap and excited by external lasers. A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light.


A high-finesse optical cavity consists of two mirrors, which traps and accumulates the photons emitted by the ion into a mode. The ion is excited cyclically by an external laser and at each cycle a photon is added to the cavity mode, which amplifies the light. (Illustration: Schmidt)

By choosing the right parameter of the drive laser, the physicists were able to achieve stronger excitation and, consequently, add more photons to the cavity. Although there was still less than one photon in the cavity, the researchers observed stimulated emission in the form of a threshold.

The trapped-ion laser could be useful to study new types of spectroscopy based on narrow-band optical excitation with quantum/classical statistical distributions, the researchers wrote. It is also suited for further investigations of the transition between quantum and classical lasers through controlled addition of more and more ions interacting with the light field.

This research work is supported by the Austrian Science Fund, the European Commission and the Federation of Austrian Industry Tirol.

For more information, visit: www.nature.com/nphys/index.html




Photonics.com
Mar 2010
GLOSSARY
excitation
1. The process by which an atom acquires energy sufficient to raise it to a quantum state higher than its ground state. 2. More specifically with respect to lasers, the process by which the material in the laser cavity is stimulated by light or other means, so that atoms are converted to a semistable state, initiating the lasing process.
ion
An atom that has gained or lost one or more electrons and, as a result, carries a negative or positive charge.
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
quantum dots
Also known as QDs. Nanocrystals of semiconductor materials that fluoresce when excited by external light sources, primarily in narrow visible and near-infrared regions; they are commonly used as alternatives to organic dyes.
threshold
1. In visual perception, the minimum value of stimulus that can be perceived on the average. 2. In optical detection systems, that signal level at which the probability of detection is 50 percent.
atomAustriaclassical laserEuropeExcitationionlasinglightlight fieldmoleculesnanooptical cavityOptical ExcitationphotonsPiet Schmidtquantum dotsquantum laserRainer BlattResearch & Technologysingle-atomspectroscopythresholdtrapped-ionUniversity of Innsbrucklasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.