Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Solar-Thermal Flat Panels Generate Electricity

Facebook Twitter LinkedIn Email Comments
CHESTNUT HILL, Mass., May 19, 2011 — High-performance nanotech materials arrayed on a flat panel platform have demonstrated seven to eight times higher efficiency than previous solar thermoelectric generators, opening up solar-thermal electric power conversion to a broad range of residential and industrial uses. The hybrid panel was developed by a team of researchers from Boston College and MIT.

Two technologies have dominated efforts to harness the power of the sun's energy. Photovoltaics convert sunlight into electric current, while solar-thermal power generation uses sunlight to heat water and produce thermal energy. Photovoltaic cells have been deployed widely as flat panels, while solar-thermal power generation employs sunlight-absorbing surfaces feasible in residential and large-scale industrial settings.

Because of limited material properties, solar-thermal devices have so far failed to economically generate enough electric power. The team has introduced two innovations — a better light-absorbing surface through enhanced nanostructured thermoelectric materials, which was then placed within an energy-trapping, vacuum-sealed flat panel. Combined, both measures added enhanced electricity-generating capacity to solar-thermal power technology, said Zhifeng Ren, a Boston College professor of physics and a co-author of the study.

"We have developed a flat panel that is a hybrid capable of generating hot water and electricity in the same system," he said. "The ability to generate electricity by improving existing technology at minimal cost makes this type of power generation self-sustaining from a cost standpoint."

Using nanotechnology engineering methods, the researchers combined high-performance thermoelectric materials and spectrally selective solar absorbers in a vacuum-sealed chamber to boost conversion efficiency, according to the co-authors, which also include Gang Chen, MIT's Soderberg professor of power engineering; Boston College and MIT graduate students; and researchers at GMZ Energy, a Massachusetts clean energy research company founded by Ren and Chen.

The findings open up a promising new approach that has the potential to achieve cost-effective conversion of solar energy into electricity, an advance that should affect the rapidly expanding residential and industrial clean energy markets, Ren said.

"Existing solar-thermal technologies do a good job generating hot water. For the new product, this will produce both hot water and electricity," he said. "Because of the new ability to generate valuable electricity, the system promises to give users a quicker payback on their investment. This new technology can shorten the payback time by one-third."

For more information, visit:
May 2011
AmericasBoston Collegeenergyflat panelsGang ChenGMZ Energygreen photonicsindustrialMassachusettsMITnanonanostructured thermoelectric materialsphotovoltaicsResearch & Technologysolar cellssolar thermoelectric generatorssolar-thermal powersunlight-absorbing surfacesthermal energyZhifeng Ren

view all
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.