Search
Menu
Rocky Mountain Instruments - Laser Optics LB

Spin-controlled Photonics Could Streamline Communications Components

Facebook X LinkedIn Email
A new class of metamaterials with the potential to control the spread of light more easily could help in the design of more streamlined components for communications technology.

The components used today in communications technology are bulky and difficult to integrate with microelectronic circuits. However, in the new class of metamaterials developed at Technion-Israel Institute of Technology, the standard characteristics of waves can be altered so the spread of light can be controlled more simply.


Thermal radiation modes emitted by spin-optical metamaterial based on inversion asymmetric kagome lattice. The illuminated color spirals symbolize the photon helicity-split due to optical Rashba effect. False-colored electric field distribution near the metasurface obtained by numerical simulation. The design of photonic metasurface symmetries via geometric gradient of the optical antenna patterns provides a route to control light-matter interaction at the nanoscale. Images courtesy of Technion-Israel Institute of Technology.

Inspired by the design of metallic nanoantennae found in nature, Nir Shitrit and colleagues created an anisotropic material — one that does not behave the same way when measured in different directions. Another critical feature is that the material does not exhibit characteristic inversion symmetry on its surface.

Meadowlark Optics - Building system MR 7/23

Shitrit and colleagues observed that electromagnetic waves propagated in a nontypical way in their new material; waves with different circular polarization had different and distinct dispersion patterns. Typically, dispersion is not linked to polarization, but in this class of material, it is shown to be polarization-dependent.

Identification of polarization-dependent waves lays the groundwork for controlling light-matter interactions at the nanoscale in future communications technology.

The research is published in Science (doi: 10.1126/science.1234892).

Published: May 2013
Glossary
anisotropic
Anisotropic is a term used to describe a material or substance that exhibits different properties or behaviors in different directions. In other words, the physical or mechanical characteristics of an anisotropic material vary depending on the direction in which they are measured. This is in contrast to isotropic materials, which have uniform properties in all directions. For example, in the context of materials science and engineering, the term anisotropic may be applied to materials like...
dispersion
Dispersion refers to the phenomenon where different wavelengths (colors) of light travel at different speeds when passing through a medium. This variation in the speed of light for different colors causes the light to spread out or disperse, resulting in the separation of the colors. The most common example of dispersion is the separation of white light into its constituent colors when it passes through a prism. Sir Isaac Newton first demonstrated this phenomenon by using a glass prism to...
metamaterial
Metamaterials are artificial materials engineered to have properties not found in naturally occurring substances. These materials are designed to manipulate electromagnetic waves in ways that are not possible with conventional materials. Metamaterials typically consist of structures or elements that are smaller than the wavelength of the waves they interact with. Key characteristics of metamaterials include: Negative refraction index: One of the most notable features of certain...
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
polarization
Polarization refers to the orientation of oscillations in a transverse wave, such as light waves, radio waves, or other electromagnetic waves. In simpler terms, it describes the direction in which the electric field vector of a wave vibrates. Understanding polarization is important in various fields, including optics, telecommunications, and physics. Key points about polarization: Transverse waves: Polarization is a concept associated with transverse waves, where the oscillations occur...
anisotropicCommunicationsdispersionelectromagneticEuropefiber opticsIsraelmetamaterialmicroelectronicMiddle EastnanoNir Shitritoptical componentsOpticspolarizationResearch & Technologyspin-opticalTechnion-Israel Institute of Technologywave propagation

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.