Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Sprinkled silver nanocubes enhance light absorption

Facebook Twitter LinkedIn Email Comments
Just as salt sprinkled over a piece of meat enhances its flavor, tiny silver cubes sprinkled at random on a polymer-coated gold surface enhance the material’s ability to “perfectly” absorb light of a given wavelength.

A simple chemical synthesis method from Duke University uses a dusting of silver nanocubes to modify the absorptive properties of a metallic surface, yielding a simple and tunable way to create large-area “perfect” absorbers. When separated from the underlying metal by a very thin insulating layer, the cubes act as tiny antennas that cancel out the reflectance of the metal surface. The cost-effective absorbers show potential for applications ranging from energy-harvesting devices to sensors.

(a) Scanning electron microscopy images of silver nanocubes as fabricated, and (b) after deposition on the gold film with remarkably uniform spacing (c). Dark-field images of the nanocubes randomly adsorbed on a nanoscale polymer spacer on a gold film, showing the light scattered by the individual nanocubes.

Manufacturing ideal perfect absorbers of infrared or visible light using lithography is expensive and does not scale well for applications requiring large surface areas.

“Our new approach is more of a bottom-up process,” said Cristian Ciracì, research scientist at the university’s Pratt School of Engineering. “It may allow us to create devices – such as efficient solar panels – that cover much larger areas. In our experiments, we demonstrated an extraordinarily simple method to achieve this.”

The new material is composed of a thin layer of gold film coated with a nanothin layer of an insulator and dusted with millions of self-assembled silver nanocubes.

Developed at Duke University, metallic nanocubes sprinkled at random on a polymer-coated gold surface provide a simple way to create a material that “perfectly” absorbs light of a given wavelength.

“The nanocubes are literally scattered on the gold film, and we can control the properties of the material by varying the geometry of the construct,” Ciracì said. “The absorptivity of large surface areas can now be controlled using this method at scales out of reach of lithography.”

By combining different components of the metamaterial elements into a single composite, more complicated reflectance spectra could be engineered, achieving a “level of control needed in more exotic applications, such as dynamic inks,” Ciracì said.

The research, published in Nature (doi: 10.1038/nature11615), was conducted in the lab of senior researcher David R. Smith.

Photonics Spectra
Mar 2013
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Americasantennachemical synthesisCristian CiracìDavid SmithDuke Universitydynamic inksenergyenergy harvestinggold surfaceimagingindustriallarge-area absorberslight absorberlithographymetallic surfacemetamaterialsMicroscopynanonanothin insulatorNorth Carolinaphotonicsreflective propertiesResearch & Technologyself-assembled nanocubesSensors & Detectorssilver nanocubessolar panelsTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.