Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Structural Material Lets Autonomous Vehicles Read Signs on Their Own

Facebook Twitter LinkedIn Email
Research at the University at Buffalo has explored the science behind microscale concave interfaces (MCI) — structures that reflect light to produce beautiful and potentially useful optical phenomena. In a published paper, Buffalo engineering researcher Qiaoqiang Gan defined how light interacts with microscale concave interfaces. Future applications for the technology, he said, could include aiding autonomous vehicles in recognizing traffic signs.

The study focused on a retroreflective material — a thin film that consists of polymer microspheres laid down on the sticky side of a transparent tape. The microspheres are partially embedded in tape, and the parts that protrude form MCIs.
Concentric rainbows are produced when white light is reflected by microscale concave interfaces. Courtesy of Jacob Rada, University of Buffalo.
Concentric rainbows are produced when white light is reflected by microscale concave interfaces. Courtesy of Jacob Rada, University at Buffalo.

When white light is shined on the film, it’s reflected in such a way that causes the light to create concentric rainbow rings, the team said. Alternatively, a single colored laser will generate a pattern of bright and dark rings. Reflections from infrared lasers also produced distinctive signals consisting of concentric rings.

To test the technology, the team applied the thin film to a stop sign. The patterns formed by the material showed up clearly on both a visual camera that detects visible light and a lidar camera that detects infrared signals, Jacob Rada, co-first author and a Ph.D. student at the University at Buffalo, said.

“Currently, autopilot systems face many challenges in recognizing traffic signs, especially in real-world conditions,” Gan said. “Smart traffic signs made from our material could provide more signals for future systems that use lidar and visible pattern recognition together to identify important traffic signs. This may be helpful to improve the traffic safety for autonomous cars.”
Visible (left) and infrared (right) images of a sign created using microscale concave interfaces to form the word STOP and other elements. The infrared image was taken using a lidar camera. Courtesy of Jacob Rada, University of Buffalo.
Visible (left) and infrared (right) images of a sign created using microscale concave interfaces to form the word STOP and other elements. The infrared image was taken using a lidar camera. Courtesy of Jacob Rada, University at Buffalo.

The team demonstrated a combined strategy to enhance the lidar signal and visible pattern recognition currently performed by both visible and infrared cameras, Rada said. “Our work showed that the MCI is an ideal target for lidar cameras, due to the constantly strong signals that are produced.”

A U.S. patent for the material has been issued, as has a counterpart in China, with Fudan University and the University at Buffalo as patent holders. 

According to Gan, future plans include testing the film using different wavelengths of light and different materials for the microspheres, with the goal of enhancing performance for possible applications such as traffic signs designed for future autonomous systems.

The research was conducted by the University at Buffalo, the University of Shanghai for Science and Technology, Fudan University, Texas Tech University, and Hubei University. The work was partially funded by a grant from the U.S. National Science Foundation.

The research was published in Applied Materials Today (www.doi.org/10.1016/j.apmt.2021.101146).

Vision-Spectra.com
Sep 2021
GLOSSARY
thin film
A thin layer of a substance deposited on an insulating base in a vacuum by a microelectronic process. Thin films are most commonly used for antireflection, achromatic beamsplitters, color filters, narrow passband filters, semitransparent mirrors, heat control filters, high reflectivity mirrors, polarizers and reflection filters.
lidar
An acronym of light detection and ranging, describing systems that use a light beam in place of conventional microwave beams for atmospheric monitoring, tracking and detection functions. Ladar, an acronym of laser detection and ranging, uses laser light for detection of speed, altitude, direction and range; it is often called laser radar.
reflection
Return of radiation by a surface, without change in wavelength. The reflection may be specular, from a smooth surface; diffuse, from a rough surface or from within the specimen; or mixed, a combination of the two.
white light
Light perceived as achromatic, that is, without hue.
visibility
The maximum distance at which the eye can perceive and evaluate objects.
Research & Technologyopticsmaterialsthin filmlidarlasersreflectionAutonomous drivingcamerasinfraredwhite lightoptical phenomenonmicroscale concave interfaceFudan UniversityTexas Tech UniversityHubei Universitytraffic signsroad safetyvisibilityUniversity at Buffalo

Comments
news
Submit a Feature Article Submit a Press Release
Terms & Conditions Privacy Policy About Us Contact Us
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.