Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Superblack Material Created

Facebook Twitter LinkedIn Email Comments
TROY, N.Y., Jan. 23, 2008 -- The darkest material ever made by man absorbs more than 99.9 percent of the light that hits it and could one day be used to boost the efficiency of solar energy conversion, infrared sensors and other devices.

The material, created by researchers at Rensselaer Polytechnic Institute and Rice University, is a thin coating comprised of low-density arrays of loosely vertically-aligned carbon nanotubes. The researchers have applied for a Guinness World Record for their efforts.
The vertically aligned carbon nanotube samples were mounted in the center of a integrating sphere, which measured the material's reflectivity. (Images courtesy Rensselaer)
“It is a fascinating technology, and this discovery will allow us to increase the absorption efficiency of light as well as the overall radiation-to-electricity efficiency of solar energy conservation,” said Shawn-Yu Lin, professor of physics at Rensselaer and a member of the university’s Future Chips Constellation, who led the research project. “The key to this discovery was finding how to create a long, extremely porous vertically-aligned carbon nanotube array with certain surface randomness, therefore minimizing reflection and maximizing absorption simultaneously.”

The research results were published in the journal Nano Letters.

All materials, from paper to water, air, or plastic, reflect some amount of light. Scientists have long envisioned an ideal black material that absorbs all the colors of light while reflecting no light. So far they have been unsuccessful in engineering a material with a total reflectance of zero.

The total reflectance of conventional black paint, for example, is between 5 and 10 percent. The darkest man-made material, prior to the discovery by Lin’s group, boasted a total reflectance of 0.16 percent to 0.18 percent.
The new darkest man-made material, with its 0.045 percent reflectance (center), is noticeably darker than the 1.4 percent NIST reflectance standard (left) and a piece of glassy carbon (right).
Lin’s team created a coating of low-density, vertically aligned carbon nanotube arrays that are engineered to have an extremely low index of refraction and the appropriate surface randomness, further reducing its reflectivity. The end result was a material with a total reflective index of 0.045 percent -- more than three times darker than the previous record, which used a film deposition of nickel-phosphorous alloy.

“The loosely-packed forest of carbon nanotubes, which is full of nanoscale gaps and holes to collect and trap light, is what gives this material its unique properties,” Lin said. “Such a nanotube array not only reflects light weakly, but also absorbs light strongly. These combined features make it an ideal candidate for one day realizing a superblack object.”

“The low-density aligned nanotube sample makes an ideal candidate for creating such a superdark material because it allows one to engineer the optical properties by controlling the dimensions and periodicities of the nanotubes,” said Pulickel Ajayan, the Anderson Professor of Engineering at Rice University in Houston, who worked on the project when he was a member of the Rensselaer faculty.

The research team tested the array over a broad range of visible wavelengths of light, and showed that the nanotube array’s total reflectance remains constant.
A side-view scanning electron micrograph of the darkest material at a high magnification. The nanotubes are vertically aligned, forming a highly porous nanostructure.
“It’s also interesting to note that the reflectance of our nanotube array is two orders of magnitude lower than that of the glassy carbon, which is remarkable because both samples are made up of the same element -- carbon,” said Lin.

This discovery could lead to applications in areas such as solar energy conversion, thermalphotovoltaic electricity generation, infrared detection, and astronomical observation.

Other researchers contributing to the project and listed authors of the paper include Rensselaer physics graduate student Zu-Po Yang, Rice postdoctoral research associate Lijie Ci and Rensselaer senior research scientist James Bur.

The work was funded by the US Department of Energy’s Office of Basic Energy Sciences and the Focus Center New York for Interconnects.

Lin’s research was conducted as part of the Future Chips Constellation at Rensselaer, which focuses on innovations in materials and devices, in solid-state and smart lighting, and applications such as sensing, communications, and biotechnology.

For more information, visit:
Jan 2008
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
The ratio of reflected flux to incident flux. Unless otherwise specified, the total reflectance is meant; it is sometimes convenient to divide this into the sum of the specular and the diffuse reflectance.
The ratio of the intensity of the total radiation reflected from a surface to the total incident on that surface.
arrayBiophotonicscarboncarbon nanotubeCommunicationsConsumerdarkest materialenergyfiber opticsGuiness World Recordinfraredlightman-madenanonanoscaleNews & FeaturesphotonicsPulickel AjayanReflectancereflectivityRensselaerRice UniversitySensors & DetectorsShawn-Yu LinSolar Energysuperdarkthermalphotovoltaicwavelength

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.