Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Superparticles Shaped from Nanorods

Facebook Twitter LinkedIn Email Comments
GAINESVILLE, Fla., Oct. 23, 2012 — A new technique for growing complex superparticles from self-assembling nanorods could create a new generation of polarized LEDs.

Joining nanoparticles creates new materials with [enhanced] collective properties. Such materials have the potential to revolutionize applications from data processing to medicine, but attempts to assemble nanoscale objects into sophisticated structures have been largely unsuccessful.

The University of Florida study represents a major breakthrough in the field, showing how thermodynamic forces can manipulate growth of nanoparticles into superparticles with unprecedented precision.

Artistic renderings of a superparticle formed from self-assembling nanorods.
Artistic renderings of a superparticle formed from self-assembling nanorods. Courtesy of Dustin S. LaMontagne.

 In the study, a synergism of fluorescent nanorods, sometimes used as biomarkers in biomedical research, resulted in a superparticle with an emission polarization ratio that could make it a good candidate for creating a new generation of polarized LEDs, used in display devices such as 3-D TVs.

“The technology for making the single nanorods is well established,” said Tie Wang, a postdoctoral researcher and lead author of the study, which appeared in Science (doi: 10.1126/science.1224221). “But what we’ve lacked is a way to assemble them in a controlled fashion to get useful structures and materials.”

Individual rods were bathed in a series of liquid compounds that reacted with certain hydrophobic regions on the nanoparticles, pushing them into place to form colloidal superparticles with dimensions ranging from hundreds of nanometers to several microns. The superparticles’ shape is controlled by the number of rods: In smaller numbers, the rods all align in the same direction, whereas a larger number of rods produces capping regions where the rods are perpendicular to those in the core of the superstructure.

Two different treatments yielded two different products.

“One treatment gave us something completely unexpected — these superparticles with a really sophisticated structure unlike anything we’ve seen before,” Wang said. The other yielded a less complex structure that the team grew into a small square of polarized film about one-quarter the size of a postage stamp.

The film could be used to increase the efficiency in polarized LED computer and TV screens by up to 50 percent using currently available manufacturing methods, the chemists said.

For more information, visit:
Oct 2012
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Americasbiomarkersbiomedical researchFloridafluorescent nanorodsindustrialLEDslight emitting diodeslight sourcesnanonanoparticlesNanorodsnanostructuresphotonicsResearch & Technologyself-assembling nanostructuressuperparticlesTie WangUniversity of Florida

view all
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.