Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

THz Laser Temp. Tweaked
Apr 2008
LEEDS, England, April 2, 2008 -- In a step toward moving terahertz devices from niche applications to everyday use, researchers in England and the US have increased the operating temperature of a terahertz (THz) quantum cascade laser by nearly 10 degrees.

Terahertz waves are invisible to the naked eye and can penetrate materials like paper, clothing and plastics while remaining harmless to humans. Terahertz spectra can indicate explosives or analyze complex pharmaceutical substances in ways current technologies, such as x-rays, cannot. However, terahertz systems are impractical because they require expensive lasers that function only at temperatures well below zero, liquid-helium-cooled detectors and bulky optical benches that make field work unfeasible.

A collaboration between the Universities of Leeds and Harvard recorded the highest operating temperature to date for a THz quantum cascade laser (QCL), which at -95 °C (-139 °F) is still a long way from the room temperature needed to make use of the devices more practical, but which presents a step toward the goal of creating a small, portable THz device.

The Leeds team, led by professors Edmund Linfield and Giles Davies from the Faculty of Engineering, achieved the record temperature by using copper instead of gold for the cladding material in the metal-metal THz QCL waveguides. The previous highest operating temperature recorded for the laser was -104 °C.

“The potential uses for terahertz technology are huge, but at the moment they are limited to niche applications in, for example, the pharmaceutical industry and astronomy, as the current systems on the market are expensive and physically quite large. The availability of cheap, compact systems would open up a wide range of opportunities in fields including industrial process monitoring, atmospheric science, and medicine,” said Linfield, professor of terahertz electronics in the School of Electronic and Electrical Engineering at Leeds.

The researchers believe they can raise the laser's operating temperature even more, inching handheld terahertz technology even closer to practical use.

“We hope to obtain further advances by optimizing the methods we used to create the device,” Linfield said. “We have some radically new design ideas, and also believe that we can make significant improvements in the way we fabricate the lasers.”

Terahertz QCLs are created by building layers of compounds of aluminium, gallium and arsenic one atomic monolayer at a time, through a process known as molecular beam epitaxy. Leeds’ Faculty of Engineering is one of a small number of laboratories in the world actively "growing" THz QCLs using a molecular beam epitaxy system purchased through the Science Research Infrastructure Fund.

In molecular beam epitaxy, the chemicals evaporate from heated cells, and land on a heated, rotating, substrate. Minute changes in temperature, combined with a set of shutters that block the chemical beams, enable the team to adjust the amount of each chemical which is deposited on the substrate, gradually building up the layers they need. To ensure the device works perfectly, there must be no pollutants, so the process is carried out under ultrahigh vacuum conditions, approaching the vacuum levels found in outer space.

The research was carried out in collaboration with the group of professor Frederico Capasso at Harvard University, who demonstrated the first quantum cascade laser at mid-infrared frequencies in 1994. Linfield and Davies led the team that first demonstrated a quantum cascade laser at terahertz frequencies, in 2002 when they were at Cambridge University; Davies is now professor of electronic and photonic engineering at Leeds.

The research is supported by the UK's Engineering and Physical Sciences Research Council (EPSRC) was published in a March issue of Optics Express.

For more information, visit:

The scientific observation of celestial radiation that has reached the vicinity of Earth, and the interpretation of these observations to determine the characteristics of the extraterrestrial bodies and phenomena that have emitted the radiation.
A well controlled thin films technique for growing films with good crystal structure in ultra high vacuum environments at very low deposition rates. Epitaxy methods are well known for the growing of single crystals in which chemical reactions produce thin layers of materials whose lattice structures are identical to that of the substrate on which they are deposited. Some examples are molecular beam epitaxy, liquid phase epitaxy and vapor phase epitaxy. Molecular beam epitaxy is also commonly...
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
quantum cascade laser
A Quantum Cascade Laser (QCL) is a type of semiconductor laser that emits light in the mid- to far-infrared portion of the electromagnetic spectrum. Quantum cascade lasers offer many benefits: They are tunable across the mid-infrared spectrum from 5.5 to 11.0 µm (900 cm-1 to 1800 cm-1); provide a rapid response time; and provide spectral brightness that is significantly brighter than even a synchrotron source. Quantum cascade lasers comprise alternating layers of semiconductor...
astronomyBasic ScienceBiophotonicschemicalsepitaxyGiles DavieshandheldHarvardindustrialLeedsLinfieldmid-infraredmolecular beammolecular beam epitaxynanoNews & FeaturesOperating TemperaturephotonicsQCLquantum cascade laserSensors & DetectorsterahertzTHzwaveguideslasers

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.