Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

THz Plasmonic Crystal is Tunable

Facebook Twitter LinkedIn Email Comments
Normally the light passing through the atomic structure of a photonic crystal is of a fixed frequency, but light passing through a crystal containing plasma can be tuned by adjusting the voltage applied to it, say researchers in New Mexico.

Photonic crystals are artificially constructed to allow light transmission of particular wavelengths. A plasmonic crystal has the ability to direct light like a photonic crystal but has a subwavelength size and could lead to smaller photonic crystals and tunable metamaterials.

A team led by Sandia National Laboratory created a plasmonic crystal that can transmit terahertz light at varying frequencies, something potentially useful for high-speed data transmission.

Greg Dyer is co-principal investigator of a Sandia-led team that has created a plasmonic, or plasma-containing, crystal that is tunable by adjusting the voltage applied to it. The technology potentially could increase the bandwidth of high-speed communication networks. Photo by Randy Montoya, courtesy of Sandia National Lab.

The crystal's electronic plasma forms naturally at the interface of semiconductors with different bandgaps. It sloshes between their atomically smooth boundaries that, properly aligned, form a crystal. Patterned metal electrodes allow its properties to be reconfigured, altering its light transmission range. In addition, defects intentionally mixed into the electron fluid allow light to be transmitted where the crystal is normally opaque.

“Our experiment is more than a curiosity precisely because our plasma resonances are widely tunable,” said Greg Dyer, co-primary investigator. "Usually, electromagnetically induced transparencies in more widely known systems like photonic crystals and metamaterials require tuning a laser's frequencies to match a physical system. Here, we tune our system to match the radiation source. It's inverting the problem, in a sense."

A paper on the work, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals," appeared online Sept. 29 in Nature Photonics (DOI: 10.1038/NPHOTON.2013.252) and is expected in print in November. Other authors include Eric Shaner, Albert D. Grine, Don Bethke and John L. Reno of Sandia; Gregory R. Aizin of the City University of New York; and S. James Allen of the Institute for Terahertz Science and Technology, University of California Santa Barbara.

For more information, visit:

Photonics Spectra
Jan 2014
In a semiconductor material, the minimum energy necessary for an electron to transfer from the valence band into the conduction band, where it moves more freely.
A solid with a structure that exhibits a basically symmetrical and geometrical arrangement. A crystal may already possess this structure, or it may acquire it through mechanical means. More than 50 chemical substances are important to the optical industry in crystal form. Large single crystals often are used because of their transparency in different spectral regions. However, as some single crystals are very brittle and liable to split under strain, attempts have been made to grind them very...
A material engineered from artificial matter not found in nature. The artificial makeup and design of metamaterials give them intrinsic properties not common to conventional materials that are exploited as light waves and sound waves interact with them. One of the most active areas of research involving metamaterials currently explores materials with a negative refractive index. In optics, these negative refractive index materials show promise in the fabrication of lenses that can achieve...
AmericasbandgapcrystalGreg Dyerlight transmissionMaterials & ChemicalsmetamaterialNature Photonicsopticsphotonicplasma resonanceplasmonicResearch & TechnologySandiaTech Pulseterahertzlasers

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.