Search
Menu
Spectrogon US - Optical Filters 2024 LB

Tapping Solar’s Full Potential

Facebook X LinkedIn Email
ORLANDO, Fla., & URBANA-CHAMPAIGN, Ill., Dec. 10, 2013 — The realization of solar cells’ full potential may be a little closer, thanks to newly created large sheets of nanotextured silicon microcell arrays. The discovery holds the promise of making solar cells lightweight, bendable, more efficient and easily mass-produced.

Converting sunshine into electricity is not a difficult process, but the lack of a national solar cell network reveals that much of the difficulty lies in doing so efficiently and on a large scale.


A printed cell. Images courtesy of the University of Central Florida.


But a team from the University of Illinois at Urbana-Champaign (UIUC) and the University of Central Florida in Orlando may be one step closer. The group used a light-trapping scheme based on a nanoimprinting technique in which a polymeric stamp mechanically embosses a nanoscale pattern onto the solar cell without additional complex lithographic steps. This approach provides the flexibility that researchers have been searching for, making the design ideal for mass manufacturing, said UCF assistant professor Debashis Chanda, lead researcher of the study.

Previously, scientists had suggested designs that showed higher rates of sunlight absorption, but how efficiently that sunlight was converted into electrical energy was unclear, Chanda said. This study demonstrates that the investigators’ light-trapping scheme offers higher electrical efficiency in a lightweight, flexible module.


Perkins Precision Developments - Custom Laser Mirrors MR 4/24
The team believes that this technology could someday lead to solar-powered homes fueled by cells that are reliable and provide stored energy for hours without interruption.


Debashis Chanda helped create large sheets of nanotextured silicon microcell arrays that hold the promise of making solar cells lightweight, more efficient, bendable and easy to mass produce. 


Chanda, who joined UCF in the fall of 2012 from UIUC, has joint appointments at the Nanoscience Technology Center and the College of Optics and Photonics (CREOL). He has published multiple articles on light-matter interactions and metamaterials. For some of his pioneering works, Chanda was awarded a Department of Energy solar innovation award and a Natural Sciences and Engineering Research Council award, among others. He also earned a National Science Foundation Summer Institute Fellowship this year.

Other researchers on the project include Ki Jun Yu, Li Gao, Jae Suk Park, Yi Ri Lee, Christopher J. Corcoran, Ralph G. Nuzzo and John A. Rogers from UIUC.

The study's findings are featured in the November issue of Advanced Energy Materials.

For more information, visit: www.ucf.edu


Published: December 2013
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
AmericasCREOLDebashis ChandaDOEgreen photonicsMaterials & ChemicalsnanonanoscienceOpticsphotonicsResearch & Technologysiliconsolar cellsUCFUIUC

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.