Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

Team Demonstrates Multiple DOF, Solid-State Quantum Memory

Photonics.com
Aug 2018
HEFEI, China, Aug. 28, 2018 — A team from the University of Science and Technology of China has developed multi-degree-of-freedom (DOF) multiplexed solid-state quantum memory and has demonstrated photon pulse operation functions with time and frequency DOFs.

The researchers demonstrated the on-demand storage of orbital-angular-momentum states with weak coherent pulses at the single-photon level in a rare-earth-ion-doped crystal. Through the combination of this 3D spatial DOF with 2D temporal and 2D spectral DOFs, the team created a multiple-DOF memory with high multimode capacity.

According to the researchers, this device could serve as a quantum mode converter with high fidelity — a fundamental requirement for the construction of a multiplexed quantum repeater.

The team further demonstrated that the device could perform arbitrary pulse operations within time and frequency DOF. Representative operations included pulses sequencer, multiplexer, selective spectral shifter, and configurable beamsplitter. The experimental results showed that in all of these operations, the 3D quantum states carried by photons maintained a fidelity of about 89 percent.

The researchers believe that the developed quantum memory could serve as a building block for scalable photonic quantum information processing architectures. The memory device can realize all the operations required for Knill-Laflamme-Milburn-type quantum computation. It could also find application in the field of linear optical quantum computing. 

Multi-degree-of-freedom (DOF) multiplexing quantum storage experimental device. Courtesy of Tianshu Yang, University of Science and Technology of China.


A multi-degree-of-freedom (DOF) multiplexing quantum storage experimental device. Courtesy of Tianshu Yang.

The research was published in Nature Communications (doi: 10.1038/s41467-018-05669-5).

GLOSSARY
quantum optics
The area of optics in which quantum theory is used to describe light in discrete units or "quanta" of energy known as photons. First observed by Albert Einstein's photoelectric effect, this particle description of light is the foundation for describing the transfer of energy (i.e. absorption and emission) in light matter interaction.
quantum
Smallest amount into which the energy of a wave can be divided. The quantum is proportional to the frequency of the wave. See photon.
Research & TechnologyeducationAsia-Pacificopticslinear opticssingle photon statesolid-statequantum memoryquantum opticsquantumUniversity of Science and Technology of China

Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, info@photonics.com

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.