Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Terahertz QCL Demonstrates Record Power in CW Mode

Facebook Twitter LinkedIn Email Comments
The output power of a terahertz quantum cascade laser (QCL) has been effectively doubled, producing record output power of up to 230 mW in CW mode, compared to the previous record of 138 mW.

A team from the Institute of Applied Physics and Computation Mathematics and the China Academy of Engineering Physics, led by researcher Xuemin Wang, reported the results, and attributed the higher output power to the material growth and manufacturing processes they used. QCLs are made from thin layers of material, which enables tuning of the emitted wavelength.

terahertz qcl
A scanning electron microscope image of the terahertz quantum cascade laser. Courtesy of Wang, et al./AIP Advances. 

The researchers reported a 2.9-mm-long device operating at 3.11 THz with a low threshold current density of 270 A/cm2 at about 15 K, developed using a hybrid bound-to-continuum transition and resonant phonon extraction design. The maximum operating temperature was about 65 K in CW mode, and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated for a quasi-Gaussian distribution.

The output power increase demonstrates that the team's method of controlling the growth of the laser's layers can increase output power, Wang said, and he is hopeful that future improvements could bring the continuous power above 1 W, which thus far has only been produced in terahertz QCLs operating in pulsed wave mode. A hybrid bound-to-continuum transition and resonant phonon extraction design was used.

The unique qualities of terahertz radiation make it an attractive candidate for imaging, but the ability to produce and control terahertz waves has lagged behind technology for radio, microwave and visible light. Wang believes the new laser could become a flexible source of terahertz radiation for spectroscopy, medical imaging, remote sensing and other applications.

The research was published in AIP Advances (doi: 10.1063/1.4959195).

Photonics Spectra
Sep 2016
quantum cascade laser
A Quantum Cascade Laser (QCL) is a type of semiconductor laser that emits light in the mid- to far-infrared portion of the electromagnetic spectrum. Quantum cascade lasers offer many benefits: They are tunable across the mid-infrared spectrum from 5.5 to 11.0 µm (900 cm-1 to 1800 cm-1); provide a rapid response time; and provide spectral brightness that is significantly brighter than even a synchrotron source. Quantum cascade lasers comprise alternating layers of semiconductor...
remote sensing
Technique that utilizes electromagnetic energy to detect and quantify information about an object that is not in contact with the sensing apparatus.
Research & TechnologyAsia-PacificQCLterahertzquantum cascade laserchina academy of engineering physicsxuemin wangimagingremote sensingBiophotonicsspectroscopyTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.