Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Theorists Propose Using Heat to Power QCLs

Facebook Twitter LinkedIn Email Comments
INNSBRUCK, Austria, Nov. 14, 2012 — What if you could use the heat generated in a quantum cascade laser — something that normally causes the lasing to turn off — to power the device instead?

Two physicists from the University of Innsbruck have suggested just that. While looking for ways to reduce heat in these lasers, they came up with a novel idea: Let heat power the laser. They propose a theory that the heating effect in quantum cascade lasers (QCLs) could not only be avoided but, in fact, reversed and used to the laser’s advantage by cleverly modifying the semiconductor layers’ thickness.

 This is a schematic picture of a quantum cascade laser. The layers of different semiconductor material constitute the bandstructure shown in the inset.
This is a schematic picture of a quantum cascade laser. The layers of different semiconductor material constitute the bandstructure shown in the inset. Courtesy of Christoph Deutsch.

Lasers have been around for more than 50 years, but not all wavelengths have been equally researched. For the far-infrared and terahertz regimes, QCLs are the most important source of coherent radiation. Light amplification in such a cascade laser is achieved through a repeated pattern of specifically designed semiconductor layers of diverse doping through which electric current is running.

“The electrons are transferred through this structure in a specific series of tunneling processes and quantum leaps, emitting coherent light particles,” said professor Helmut Ritsch of the university’s Institute for Theoretical Physics. “Between these layers, the electrons collide with other particles, which heat the laser.”

Too much heat extinguishes the laser light in QCLs, which work only as long as they are strongly cooled.

“A crucial part is to spatially separate the cold and warm areas in the laser,” said doctoral candidate Kathrin Sandner. “In such a temperature-gradient-driven laser, electrons are thermally excited in the warm area and then tunnel into the cooler area, where photons are emitted.” This produces a circuit where light particles are emitted and heat is absorbed from the system simultaneously.

“Between the consecutive emissions of light particles, a phonon is absorbed, and the laser is cooled,” Sandner said. “When we develop this idea further, we see that the presence of phonons may be sufficient to provide the energy for laser amplification.” A phonon is a quantum mechanical description of a special type of vibrational motion; a laser powered in this way wouldn’t need electric current.

“Of course, it is quite a challenge to implement this concept in an experiment,” Ritsch said. “But if we are successful, it will be a real technological innovation.”

The physical principle behind the idea could be applied to existing QCLs to provide internal cooling. Experimental physicists are already examining the simplified concept.

“Apart from the conceptual elegance of this idea, a completely new way may open up of using heat in microchips in a beneficial way instead of having to dissipate it by cooling,” Ritsch said.

The theory was published in Physical Review Letters (doi: 10.1103/PhysRevLett.109.193601).  

For more information, visit:
Nov 2012
coherent radiation
Radiation in which the phase relationship between any two points in the radiation field has a constant difference, or is exactly the same in either the spatial or the temporal mode throughout the duration of the radiation.
laser cooling
A process and method by which manipulation and orientation of a given number of directed laser beams decreases the motion of a group of atoms or molecules such that their internal thermodynamic temperatures reach near absolute zero. The 1997 Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips for the development of methods to cool and trap atoms with laser light.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
quantum cascade laser
A Quantum Cascade Laser (QCL) is a type of semiconductor laser that emits light in the mid- to far-infrared portion of the electromagnetic spectrum. Quantum cascade lasers offer many benefits: They are tunable across the mid-infrared spectrum from 5.5 to 11.0 µm (900 cm-1 to 1800 cm-1); provide a rapid response time; and provide spectral brightness that is significantly brighter than even a synchrotron source. Quantum cascade lasers comprise alternating layers of semiconductor...
AustriaBasic Sciencecoherent lightcoherent radiationEuropefar-infrared lasersheat reduction in lasersHelmut RitschKathrin Sandnerlaser amplificationlaser coolinglaserslight amplificationlight particlesphotonicsQCLquantum cascade laserResearch & Technologysemiconductor layersterahertz lasersUniversity of Innsbruck

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.