Close

Search

Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Thin-Film Approach and Monochromatic Laser Light Set Mark for Photovoltaic Cell Efficiency

Facebook Twitter LinkedIn Email Comments
FREIBURG IM BREISGAU, Germany, June 30, 2021 — Researchers at Fraunhofer Institute for Solar Energy Systems ISE have achieved a conversion efficiency of 68.9% for a III-V semiconductor photovoltaic cell based on gallium arsenide (GaAs) exposed to laser light of 858 nm. The mark is reportedly the highest efficiency yet achieved for the conversion of light into electricity.

The team used a thin-film technology in which the solar cell layers are first grown on a GaAs substrate, which is then removed. A conductive, highly reflective mirror is applied to the back surface of the remaining semiconductor structure, which is only a few micrometers thick.

In photovoltaic cells, light is absorbed in a cell structure, made of GaAs semiconductor material, for example. The absorbed light sets positive and negative charges free, which are in turn conducted to the front and back cell contacts, generating electricity. This “photovoltaic effect” is particularly efficient when the energy of the incident light lies slightly above the so-called bandgap energy that is inherent to the semiconductor material.

Therefore, very high efficiencies are theoretically possible when a monochromatic laser light source is matched with a suitable semiconductor compound material.

In this new form of energy transfer, called power by light, laser energy is delivered through the air or via an optical fiber to a photovoltaic cell, the properties of which match the power and the wavelength of the monochromatic laser light. Compared to conventional power transmission that uses copper wires, power by light systems are especially beneficial for applications that require a galvanically isolated power supply, lightning or explosion protection, electromagnetic compatibility, or completely wireless power transmission, for example.

The Fraunhofer ISE research team achieved a record conversion efficiency of 68.9% under monochromatic laser light with a new thin film photovoltaic cell based on gallium arsenide. Courtesy of Henning Helmers/Fraunhofer ISE.
The Fraunhofer ISE research team achieved a conversion efficiency of 68.9% under monochromatic laser light with a new thin-film photovoltaic cell based on gallium arsenide. The Fraunhofer teams said the efficiency is a record for the conversion of light into electricity. Courtesy of Henning Helmers/Fraunhofer ISE.

Henning Helmers, head of the Fraunhofer ISE research team, said that the leveraged thin-film approach has two distinct advantages for efficiency. “First of all, photons are trapped in the cell and the absorption is maximized for photon energies close to the bandgap, which simultaneously minimizes thermalization and transmission losses, making the cell more efficient," Helmers said.

"Secondly, the photons additionally generated internally by radiative recombination become trapped and effectively recycled. This extends the effective carrier lifetime, thus additionally increasing the voltage.”

The group investigated thin-film photovoltaic cells with back-surface reflectors made of gold and an optically optimized combination of ceramic and silver, with the latter showing the best results. An n-GaAs/p-AIGaAs heterostructure was developed as an absorber, which shows particularly low charge carrier losses due to recombination.

“This is an impressive result that shows the potential of photovoltaics for industrial applications beyond solar power generation,” said Andreas Bett, institute director of Fraunhofer ISE.

Applications for the technology include the structural monitoring of wind turbines, the monitoring of high-voltage lines, fuel sensors in aircraft tanks, passive optical networks, the optical supply of implants from outside the body, or a wireless power supply for applications in the Internet of Things.

The work was presented at the 48th IEEE Photovoltaic Specialists Conference (www.doi.org/10.1002/pssr.202100113).


Photonics.com
Jun 2021
GLOSSARY
photovoltaic cell
Also known as a self-generating barrier layer cell. A photoelectric detector that converts radiant flux directly into electrical current. Generally, it consists of a thin silver film on a semiconductor layer deposited on an iron substrate.
solar cell
A device for converting sunlight into electrical energy, consisting of a sandwich of P-type and N-type semiconducting wafers. A photon with sufficient energy striking the cell can dislodge an electron from an atom near the interface of the two crystal types. Electrons released in this way, collected at an electrode, can constitute an electrical current.
thin film
A thin layer of a substance deposited on an insulating base in a vacuum by a microelectronic process. Thin films are most commonly used for antireflection, achromatic beamsplitters, color filters, narrow passband filters, semitransparent mirrors, heat control filters, high reflectivity mirrors, polarizers and reflection filters.
Research & Technologymaterialsphotovoltaicsphotovoltaic cellefficiencyrecord efficiencyrecordgallium arsenideIEEE Photovoltaic Specialists Conferencepower conversionlaserslight sourcesFraunhofer ISEsolar cellsemiconductorsemiconductorsthin filmHenning HelmersFraunhoferEurope

Comments
LATEST HEADLINES
view all
PHOTONICS MARKETPLACE
Search more than 4000 manufacturers and suppliers of photonics products and services worldwide:

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2021 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.