Three Argonne Projects Garner DOE Funding

Facebook X LinkedIn Email
LEMONT, Ill., Aug. 25, 2021 — Three projects at Argonne National Laboratory have received funding from the U.S. Department of Energy in a push to lay the groundwork for breakthroughs in quantum information science. The awards are part of a $61 million investment in quantum science and engineering.

Using resources at Argonne’s Center for Nanoscale Materials (CNM), a team of researchers led by Jianguo Wen will develop a microscope to enable the visualization of quantum emitters the size of a single atom, or a few nanometers across. This will enable researchers to precisely measure an emitter’s features and optimize it for quantum networks. The tool, the Quantum Emitter Electron Nanomaterial Microscope, or QuEEN-M, combines recent developments in electron beam pulsers to create new capabilities that can be applied to a wide array of scientific and technical problems in quantum information science.

A team of researchers led by Jeffrey Guest will develop the Atomic Quantum Information Surface Science (AQuISS) Lab to better understand and control defects near the surface of crystals, associated with quantum information storage through the property of spin. The lab’s establishment will enable the team to learn how to manipulate surface spin sites to better hold and manipulate quantum information. The team will also seek to develop new materials and spins on crystal surfaces, improving them for quantum information storage and processing.

Reliable and scalable information distribution in quantum networks
Argonne scientist Martin Suchara and colleagues at the University of Chicago and the University of Illinois at Urbana-Champaign will design a quantum internet protocol that manages different types of quantum information encoding. They will also examine how quantum states are transformed from one type into another inside a quantum network with multiple senders and recipients. Their studies will enable them to improve the flow of information through a network, using the Argonne quantum network as a test site.

Published: August 2021
The term quantum refers to the fundamental unit or discrete amount of a physical quantity involved in interactions at the atomic and subatomic scales. It originates from quantum theory, a branch of physics that emerged in the early 20th century to explain phenomena observed on very small scales, where classical physics fails to provide accurate explanations. In the context of quantum theory, several key concepts are associated with the term quantum: Quantum mechanics: This is the branch of...
Acronym for self-aligned polysilicon interconnect N-channel. A metal-gate process that uses aluminum for the metal-oxide semiconductor (MOS) gate electrode as well as for signal and power supply connectors.
A solid with a structure that exhibits a basically symmetrical and geometrical arrangement. A crystal may already possess this structure, or it may acquire it through mechanical means. More than 50 chemical substances are important to the optical industry in crystal form. Large single crystals often are used because of their transparency in different spectral regions. However, as some single crystals are very brittle and liable to split under strain, attempts have been made to grind them...
1. In optics, one of the exterior faces of an optical element. 2. The process of grinding or generating the face of an optical element.
electron microscope
A device utilizing an electron beam for the observation and recording of submicroscopic samples with the aid of photographic emulsions or other short-wavelength sensors. With the electron microscope, the maximum useful magnification is over 300,000.
A source of radiation.
Businessfundingquantumquantum communicationspincrystalcrystal defectscrystal defect cavitysurfacesurfacessurface defectMicroscopyelectron microscopeelectron microscopyemitterquantum emitterArgonne National LabArgonne National LaboratoryDepartment of Energy

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.