Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook
More News

Tin Replaces Lead in Promising Solar Cell

Facebook Twitter LinkedIn Email Comments
A new solar cell promises enhanced efficiency and a smaller environmental footprint.

The new cell, developed by a team from Northwestern University, uses a perovskite structure composed of tin instead of the traditional lead as the light-absorbing material. It is a low-cost, easily manufactured, environmentally friendly solar cell.

Cross-sectional view of a completed photovoltaic device using tin perovskite. Courtesy of Nature Photonics.

The tin solar cell has an efficiency of around 6 percent, which the researchers said is a solid starting point. The tin material is unique in its ability to absorb most of the visible light spectrum and in that it can dissolve and reform without heat once the solvent is removed, the researchers said.

They expect that the tin perovskite will eventually be able to match the efficiency of lead, which is 15 percent.

“There is no reason this new material can't reach an efficiency better than 15 percent,” said lead researcher Mercouri G. Kanatzidis, an inorganic chemist with the Weinberg College of Arts and Sciences at Northwestern. “Tin and lead are in the same group in the periodic table, so we expect similar results.”

The solid-state tin solar cell is a sandwich of five layers about 1 to 2 µm thick. The first is electrically conducting glass, which allows sunlight to enter the cell. Next is a layer of titanium dioxide that is deposited onto the glass. Together, these act as the electric front contact of the solar cell.

The next layer is the tin perovskite, deposited in a nitrogen glove box to avoid oxidation. A hole transport layer is next, which closes the electrical circuit and creates a functional cell. The final portion consists of a thin layer of gold that is also deposited into the glove box and is the back contact electrode of the solar cell.

“Solar energy is free and is the only energy that is sustainable forever,” Kanatzidis said. “If we know how to harvest this energy in an efficient way we can raise our standard of living and help preserve the environment.”

The research is published in Nature Photonics (doi: 10.1038/nphoton.2014.82). 

For more information, visit:

Photonics Spectra
Aug 2014
solar cell
A device for converting sunlight into electrical energy, consisting of a sandwich of P-type and N-type semiconducting wafers. A photon with sufficient energy striking the cell can dislodge an electron from an atom near the interface of the two crystal types. Electrons released in this way, collected at an electrode, can constitute an electrical current.
AmericasBasic ScienceenergyGreenLightIllinoisleadmaterialsNorthwestern UniversityopticsoxidationperovskitephotovoltaicsResearch & Technologysolar celltinWeinberg College of Arts and Sciences

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2019 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.