Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Tunable Laser Diode Taps NIR for Data Transmission

Facebook Twitter LinkedIn Email Comments
Tapping into undeveloped frequency bands, a new ultracompact heterogeneous-wavelength laser diode could enable higher-capacity optical data transmission systems.

The device combines silicon photonics and quantum-dot (QD) technology and demonstrates wide-range tuning operation around 1230 nm, according to researchers at Tohoku University and the National Institute of Information and Communications Technology (NICT) in Japan.

Its optical gain medium is made up of high-quality InAs QDs grown with the sandwiched subnano separator technique. The wavelength-tunable filter was constructed with ring resonators fabricated using silicon photonics techniques.

Heterogeneous-wavelength tunable laser diode

The novel heterogeneous-wavelength tunable laser diode consists of quantum dot and silicon photonics technology. Courtesy of Tomohiro Kita/Tohoku University.

Current high-capacity optical transmission systems are based on wavelength-division multiplexing (WDM) systems with dense frequency channels. Frequency channels in the standard C-band (1530 to 1565 nm) are overcrowded, and the frequency utilization efficiency is saturated in such WDM systems, the researchers said. On the other hand, there are extensive and unexploited frequency resources at near-infrared wavelengths (1000 to 1300 nm).

The new diode is a promising candidate to realize a compact and broadband light source for this region, the researchers said.

Funding came from the Strategic Information and Communications R&D Promotion Program (SCOPE) of Japan's Ministry of Internal Affairs and Communications.

The research was published in Applied Physics Express (doi: 10.7567/APEX.8.062701).

For more information, visit

Photonics Spectra
Aug 2015
quantum dots
Also known as QDs. Nanocrystals of semiconductor materials that fluoresce when excited by external light sources, primarily in narrow visible and near-infrared regions; they are commonly used as alternatives to organic dyes.
Research & TechnologyTunable LasersAsia-PacificJapanTohoku UniversityTomohiro KitalasersCommunicationsfiber opticssilicon photonicsquantum dotsTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.