Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Tungsten Inverse Opal Investigated

Photonics Spectra
Jul 2004
Daniel S. Burgess

University of Toronto researchers have reported the fabrication of an inverse opal film from tungsten. At the Conference on Lasers and Electro-Optics (CLEO) in San Francisco in May, Georg von Freymann described the work, which included the spectroscopic characterization of the optical properties of the photonic crystal.

Tungsten Inverse Opal Investigated
Scientists at the University of Toronto have fabricated inverse opal films from tungsten. The material may not be suitable for use in lighting applications, as had been hoped. Images courtesy of Georg von Freymann.

To produce the material, the scientists first created a template of packed silica spheres that they necked with silica by chemical vapor deposition to prevent cracking in the subsequent processing steps. They filled the volumes between the spheres with tungsten using chemical vapor deposition with W(CO)6, and dissolved the template with a hydrofluoric acid solution to leave behind only the tungsten inverse opal film.

Tungsten Inverse Opal Investigated
To fabricate the inverse opal, the researchers fill the volumes between packed silica spheres with tungsten using using chemical vapor deposition with W(CO)6 and then dissolve the silica with hydrofluoric acid.

To characterize the material, they performed reflectance and transmittance measurements with a PerkinElmer Lambda 900 UV-VIS-NIR spectrometer on films created from 550- and 850-nm-diameter spheres and on films with varying degrees of tungsten infiltration. Their measurements revealed a more pronounced peak in the reflectance spectrum for inverse opals created with smaller spheres and a smearing of the reflectance spectrum with increased infiltration.

Von Freymann said that the findings indicate that tungsten-based photonic crystals may never be suitable for use in lighting applications, in which it has been hoped that they might convert wasted thermal emissions into visible light to improve efficiency. The work continues, however, and he hinted that the team believes it now knows what materials will have the right properties for such a purpose.

Consumerinverse opal filmphotonic crystalResearch & TechnologyspectroscopytungstenUniversity of Toronto

Terms & Conditions Privacy Policy About Us Contact Us
back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2018 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA,

Photonics Media, Laurin Publishing
x Subscribe to Photonics Spectra magazine - FREE!
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.