Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics Spectra BioPhotonics EuroPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

Using Deep Learning, Researchers Automate UAV-Based Land Mine Detection

Facebook Twitter LinkedIn Email Comments
Researchers at Binghamton University, who previously developed a method for detecting “butterfly” land mines using low-cost, commercial drones equipped with multispectral and infrared cameras, are now focusing on automated detection of land mines using convolutional neural networks.

Nicknamed “butterfly” land mines for their small size and butterfly-like shape, PFM-1 land mines are extremely difficult to locate and clear due to their small size, low trigger mass, and a design that mostly excludes metal components, making them virtually invisible to metal detectors.

The researchers analyzed multispectral and thermal data sets collected by an automated unmanned aerial vehicle (UAV) survey system featuring scattered PFM-1-type land mines as test objects. To automate land mine detection, they relied on supervised learning algorithms using a faster regional-convolutional neural network (Faster R-CNN).

The RGB visible light Faster R-CNN demo yielded a 99.3% testing accuracy for a partially withheld testing set and a 71.5% testing accuracy for a completely withheld testing set. The researchers found that across multiple test environments, the use of cm-scale, accurate, georeferenced data sets paired with Faster R-CNN allowed for accurate automated detection of the test PFM-1 land mines. The researchers said that their detection and mapping techniques could be calibrated to other types of scatterable antipersonnel mines in future trials to aid demining initiatives. For example, they could be adapted to detect and map disturbed soil for improvised explosive devices (IEDs).

The researchers said that the use of CNN-based approaches to automate the detection and mapping of land mines is much faster than manually counting land mines from an orthoimage (an aerial image that has been geometrically corrected). Also, a CNN-based method is quantitative and reproducible, unlike ocular detection, which is subjective and prone to human error. CNN-based methods can be generalized to detect and map any objects with distinct sizes and shapes from any remotely sensed raster images.

“Rapid drone-assisted mapping and automated detection of scatterable minefields would assist in addressing the deadly legacy of widespread use of small scatterable land mines in recent armed conflicts,” professor Alek Nikulin said,  

The research was published in Remote Sensing (www.doi.org/10.3390/rs12050859). 
 

Using advanced machine learning, drones could be used to detect dangerous ‘butterfly’ land mines in remote regions of post-conflict countries, according to research from Binghamton University, State University at New York. Courtesy of Binghamton University, State University at New York.

Vision-Spectra.com
May 2020
GLOSSARY
multispectral imaging
Multispectral Imaging: Creation of an image where each pixel contains more than three spectral data points, typically four to 20. This is contrasted with a standard color camera that only captures three spectral data points (called RGB), or hyperspectral cameras, which capture hundreds of spectral data points. Traditional multispectral cameras captured four data points: RGB and an NIR band. Nowadays multispectral cameras are available as commercial off-the-shelf products, with 12 custom bands...
Research & TechnologyeducationAmericasBinghamton Universityimaginglight sourcesopticsSensors & Detectorsneural networksconvolutional neural networksunmanned aerial vehiclesdronescamerasmultispectral imaginginfrared cameraslandminesdefensemachine learningenvironmentthermal camerasthermal sensorsUAVdeep learning

Comments
Submit a Feature Article Submit a Press Release
Terms & Conditions Privacy Policy About Us Contact Us
Facebook Twitter Instagram LinkedIn YouTube RSS
©2020 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.