Search Menu
Photonics Media Photonics Marketplace Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics ProdSpec Photonics Handbook

“Virtual” Interferometers Could Minimize Size of Optical Processing Circuitry

Facebook Twitter LinkedIn Email
MELBOURNE, Australia, April 24, 2017 — A novel technique dubbed “measurement-based linear optics” could enable miniaturization of the optical processing circuitry required for quantum computers by using virtual interferometers instead of large-scale physical ones.

According to researcher Rafael Alexander, conventional interferometers that comprise hundreds or even thousands of optical elements are essential to implementing fully functional optical quantum computers.

Virtual interferometers for optical quantum computing. RMIT University, Melbourne, Australia.
Measurement-based linear optics implements a huge multimode interferometer consisting of beamsplitters (green) and phase delays (blue). The size of the virtual interferometer can be many hundreds or thousands of optical elements, despite the small size of the physical experiment. Courtesy of R. Alexander et al./APS.

“Measurement-based linear optics circumvents many of the challenges facing the conventional optics approach by using large virtual interferometers instead of physical ones. By applying a specific sequence of measurements to a continuous-variable cluster state, the measurements themselves program and implement the interferometer,” said Alexander. 

The virtual, measurement-based interferometers are programmed in real time through the choice of homodyne measurement angles. The effects of finite squeezing are captured as uniform amplitude damping.

“Six beamsplitters and a few squeezed light sources give us the potential to access virtual optical networks of an immense size,” said researcher Nicolas Menicucci.

Alexander said that the team, composed of researchers from RMIT University, the University of Sydney and the University of Technology Sydney, used “a gigantic cluster state composed of modes of light correlated in time or frequency, which can be generated using just one or two optical parametric oscillators (which implement optical squeezing) and just a handful of beamsplitters.”

The team compared its technique to existing physical interferometers and considered use of its technique for Boson sampling. The technique demonstrated efficiency in time and squeezing, showing the capacity to yield cluster states composed of more than one million entangled modes.

To overcome noise distortion — a common problem faced by virtual approaches — the team converted the noise to simple photon loss, which made the noise distortion easier to manage.

According to Alexander, the team drew inspiration for its novel approach to virtual interferometry from quantum teleportation.

“Measurement-based linear optics has the potential to reshape how we think about the interference of light,” said Menicucci. “It ports the demonstrated scalability of continuous variable cluster states to the broad range of linear-optics applications.”

The research was published in Physical Review Letters (doi: 10.1103/PhysRevLett.118.110503).
Apr 2017
The science of measurement, particularly of lengths and angles.
Research & TechnologyeducationAsia-Pacificopticsinterferometerslinear opticsquantum computingoptical processingmetrologyTech Pulse

back to top
Facebook Twitter Instagram LinkedIn YouTube RSS
©2023 Photonics Media, 100 West St., Pittsfield, MA, 01201 USA, [email protected]

Photonics Media, Laurin Publishing
x We deliver – right to your inbox. Subscribe FREE to our newsletters.
We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.